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We develop diagrammatic methods which give the explicit expression for the nth order term of the 
linked Iwamoto-Yamada cluster expansion in terms of the cluster integrals. The method applies 
independently of the number A of particles of the system. We carry through partial summations 
which for finite A result in a representation of the expansion by skeleton diagrams, whereas in the 
limit A .... 00 the expansion is reduced to two analytical equations. In addition, for finite A the 
renormalization establishes a connection between the expectation value of an arbitrary operator and 
the probability to find n hole states, I <; n <; A, occupied. Simple considerations raise some doubts 
concerning the convergence of the unrenormalized expansion. 

1. INTRODUCTION 

The last years have seen a considerable revival of the 
interest in the application of cluster expansion methods 
to nuclear systems. The cluster expansion expresses 
the expectation value (0) = ('It 10 I 'It) / ('It I 'It) of an 
operator 0 by a series of terms the nth of which, 
roughly speaking, gives the contribution to (0) of n­
particle correlations contained in the wavefunction 'It. 
Several different cluster expansions have been estab­
lished. Most applications employ the expansion of 
Iwamoto and Yamada1 (loY.) or its factorized version,2 
which is intimately related3- 8 to the hole-line expan­
sion of Brueckner theory. It has been found that varia­
tional calculations based on that method compete 
successfully with Brueckner-type calculations. For 
these reasons we concentrate in the following on the 
loY. expansion. 
Up to now a discussion of the general structure of the 
loY. expansion has not been given since in contrast to 
pertuz:bation theory no general diagrammatic represen­
tation is available. Instead methods have been deve­
loped2, 9,10 which allow the calculation of every term 
of the expansion without giving the explicit form of the 
nth order term. Three exceptions must be mentioned. 
Feenberg and Wull , 12 have established a graphical 
representation of the loY. expansion which, however, is 
limited to infinite systems. Providencia13 has given a 
diagrammatic representation of a cluster expansion 
which in contrast to the loY. expansion uses nondiagonal 
cluster integrals. Recently, Gaudin et al.14 have given 
a simple formulation of the loY. expansion which is res­
tricted to the original Jastrow choice of the wavefunc­
tion. In all these approaches the possibility of perform­
ing partial summations was not considered (see, how­
ever, Ref. 15). 

Here we develop a diagrammatic representation of the 
1. Y. expansion which is applicable to finite and infinite 
systems and to any form of the wavefunction. We use 
rather straightforward diagrammatic methods which 
are very similar to those of perturbation theory. Our 
derivation can be divided into the following steps. (i) 
In Sec. 2 we establish the formal representation of the 
generalized normalization integral 1«(3) = ('It I exp«(30) I 'It) 
in terms of the cluster integrals ("unlinked" cluster ex­
pansion). The form of the wavefunction ~fluences only 
the cluster integrals but not the formal representation 
of I«(J) in terms of these quantities. All the following 
steps depend only on the formal structure of the unlinked 
expanSion. (ii) In full analogy with the unlinked perturba­
tion expanSion, the unlinked cluster expansion for any 
m > 0 contains terms which behave like A m with in­
creasing particle number A. Thus this expansion is 
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useful only for small A. We derive an exponential form 
which constitutes a linked expansion with uniform A 
dependence (Sec. 3). (iii) USing the relation (0) = (d/d(J) x 
InI«(J) 18=0 we arrive at the linked loY. expanSion which 
can be expressed in terms of "unlabeled" diagrams 
(Sec. 4). 

For an infinite system the expansion can be resummed 
(Sec. 5) and the resulting "renormalized" expanSion is 
expressed in terms of two analytic equations.16 Simi­
lar manipulations can be carried through for a finite 
system, leading either to an interesting identity (Sec. 
6A) or to the representation of the expectation value 
by "skeleton diagrams" (Sec. 6B). In Sec. 7 we give 
some remarks on convergence questions, and Sec. 8 
contains a comparison with other approaches. In the 
Appendix we present diagrammatic methods for the 
evaluation of the cluster integrals starting either from 
the product ansatz of 'It or from the particle-hole rep­
resentation. 

We have tried to state clearly all essential steps of the 
derivation. We have skipped, however, the proofs of 
some statements. These proofs are rather elementary, 
though in some cases a mathematically rigorous presen­
tation will become lengthy. 

2. THE UNLINKED I.V. EXPANSION 

Here we establish the unlinked cluster expansion follow­
ing Ref. 2. For definiteness we use the product form of 
'It which is a generalization of the Jastrow forml7 con­
Sisting of a product of state-dependent n-particle cor­
relation functions fi '''i (1, ... ,n) multiplied by a set 

1 n 
of orthonormal single-particle functions 'P i (i): 

'It(1, ••• ,A) = a{rr[ rr. fi '''i (i1 , ... , in)) n 'Pi (i)}. 
n '1 < ••• < 1. II 1 n z 

(2.1) 
If the range is not explicitly given, summations and pro­
ducts over the indices i,j , ..• ,n always range from 1 
to A, and the argument (i) denotes the space, spin, and 
isospin coordinates of the ith particle. The symbol a 
denotes the antisymmetrization operator. 

In addition we define functions irK ... K ,K1 < ... < Km :s 
A, m :s A, by the relation 1 m 

m <Kl, .... Km> 
irK '''K (K1>'" ,Km) = a{ rr L rr . 

1 m n=l "'1<··'<'" 
. . <Kl' ... ,K m > 

xfil .. ·in(tl, .. ·,tn)) r; 'Pi(i)}· (2.2) 

The symbol rr~~~::~·iKm>(L;~~,.; .. ,Km» denotes the 
1 n 1 n 

product (sum) over all possible terms in which the 
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il>"" in are taken out of the set (K17 ••• ,Km ). We 
introduce the quantities 

(2.3) 

where 0 (1) denotes the one-body part of the operator 0, 
and we define the (reduced) subnormalization integrals 
by 

If ... K = If "'K ({:3) = (>I1K "'K I e lltl I >11K • "K ) 
1 m 1 m 1 m 1 m 

<K1····,K m > 
X n J:;l, (2.4) 

The reduced normalization integral, which we want to 
calculate, is given by 

IE({:3) = If. .. A ({:3) = (>11 I eStl 1>11) x n J:;l. (2.5) 
t 

The (reduced) cluster integrals x Kl'" Kn' 1::5 n ::5 A, all 
Kj ::5 A, are defined by the follOWing requirements: 

(i) X Kl ••• Kn is symmetric in its indices. 

(ii) x K "'K = 0 if any two (or more) indices are equal. 
1 n 

(iii) If = 1 + X K' K ::5 A, (2.6) 

I~ K = 1 + X K + X K + X K X K + X K K , 
12 1 2 12 12 

in general 

SK 1 .. ·Kn {II} l' ••. , n , 

Kl< ••• < Kn::5 A 

K1"'K {1 1} 1 S "1""'" = if all 1p = 0; 

otherwise 

(2.7) 

(2.8) 

(2.9) 

SK 1···K"{I}=sK1 • .. Kn{l1' ... ,ln} = n (m!rlm(lm!)-l 
m=l 

<Kl ... • .K,.> 

X L) 
i l " -ir 

{x. x ... xx. } 
'1 'II 

x r = L) m1m' (2.10) 
m 

Each term on the rhs of Eq. (2.10) consists of products 
of 1 m cluster integrals with m indices, 1 ::5 m ::5 n, and 
we sum over all sets of indices i1 ••• ir restricted by 

(2.11) 

By virtue of the symmetry (i) of the cluster integrals 
and of the fact that the sum is not changed if we permute 
the factors within the curly brackets, the definition given 
here is identical to that of Ref. 2. Combined with Eq. 
(2.5), Eqs. (2.8)-(2.10) represent the unlinked cluster 
expansion of IE ((:3). The formal structure of the expan­
Sion is completely independent of the choice of >11. All 
that is required is the definition of a set of subnormali­
zation integrals. 

The form of the unlinked cluster expansion is not as 
arbitrary as the derivation, given above, might suggest. 
We illustrate this by giving a short account of the physi­
cal ideas1 which have led to the creation of that expan­
Sion. The guiding principle is the assumption that the 
correlations are of short range, I.e., that If;1 ... ;,.(1, . •• , 
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n) 12 tends to 1 rapidly if the distance between any pair 
of coordinates tends to infinity. (This statement applies 
rigorously5 only in infinite systems.) Expanding IE ({:3) 
in powers of the quantity ( If 12 - 1) and carrying 
through the integrations, we find that the general term 
of that expansion separates into a product of integrals. 
This separation automatically leads to the unlinked 
cluster expansion,14 and the cluster integrals are inti­
mately related to the irreducible integrals which 
emerge from that procedure. The cluster integral with 
P indices describes the contribution to JE({3) which 
arises from the correlations of p particles. If the 
correlations are of short range, we expect that the 
probability of finding p correlated particles will de­
crease rapidly as p increases, and we thus hope that 
the contribution of xi'" i to IE ({:3) will decrease 
rapidly with increaSi~ p ~ More precise statements 
on the structure of the cluster integrals are given in 
the Appendix. 

3. DERIVATION OF THE LINKED EXPANSION 

It is well known that the contribution of Xi'" i , if 
1 n 

summed over all indices, asymptotically increases 
proportional to the number A of particles. (This state­
ment is based on the short range nature of the corre­
lation functions. See the Appendix for a proof.) Thus 
a term of the unlinked expanSion containing a product 
of m cluster integrals increases with increaSing m like 
Am. As a consequence for big A the unlinked expansion 
is not directly useful and we must resum it into a 
linked expansion. 

We first have to get rid of condition (2.11) which res­
tricts the summation on the rhs of Eq. (2.10). We for­
mally define a set of Fermion operators a; , a: and mul­
tiply each term of the sum by (Ola i ••• a i a; ., .a; 10), 

1 r r 1 

where 10) denotes the vacuum state. This yields the 
expression 

0() 

S{O} and r are defined as in Eqs. (2.9), (2.10), respec­
tively, and we have omitted the upper indices 1, •.. ,A 
on StI}. We have extended the definition of S{l} to in­
dude also terms with r > A which vanish identically. 

According to Wick's theorem18 the expectation value 
{Ola .• ··a. a: ···a"': 10) is given by the sum of all 

'1 'r '1" 11 

fully contracted terms. All nonvanishing contractions 
are of the form &.SZ~ = 0iK' In terms of diagrams we 
represent a cluster integral x i

1 
... i" ({:3) by a vertical 

beam carrying n points which from bottom to top are 
labelled by the indices i 1 to in' The set {I} is repre­
sented by a collection of 1m m-point beams, m = 1, 2" . " 
drawn in such d way that all m-point beams stand left 
of all n - point beams if m < n. The pOints are labelled 
by indices iK in such a way that within each beam K in­
creases from bottom to top and going from one beam to 
the next K increases from left to right (natural labelling, 
see Fig. 1). The contraction &.SZ~ is represented by a 
directed line starting at point K and ending at point i. 
Each fully contracted term gives rise to a diagram 
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which has the property that in each point there starts 
exactly one line and there ends exactly one line. The 
contraction lines thus form closed loops and according 
to point (ti) of the definition of x i

l
.' .i" no loop may 

touch a given beam more than once. In the diagramma­
tic representation of [lR(,:3) - 1] all diagrams with these 
properties occur exactly once. The rules for calculat­
ing the contribution of a diagram are obvious from our 
construction, except for the Sign which is given by 
(- 1)~L1(TT-l) = (_ I)T-t. Here ret) denotes the num­
ber of points (closed loops) of the diagram, and r T de­
notes the number of points which are connected by the 
Tth loop. This sign rule can easily be deduced from the 
ordering of the operators a+, a in the matrix element 
< 0 I a· ••• a· a": ••• a~ 10). Examples of diagrams are 

'I lr iy 'I 

given in Fig.l. 

We introduce the notion of a connected part of a diagram. 

Definition 3.1: A connected part is any part of a dia­
gram with the following properties: (i) It cannot be sepa­
rated into two parts without cutting contraction lines or 
a beam. (ii) We cannot include more beams or contrac­
tion lines without invalidating property (i). 

We introduce an arbitrary fixed ordering of the sets 
{I} which is indicated by an index (8): 

{I}-7{l}(S) =dl~s),l~S), .•. }, 8= 1,2, .. •• 

The sum of all diagrams of class {t}{S) which consist 
of exactly one connected part (connected diagrams) is 
denoted by S~S). We define quantitiesA(s) by 

(s) 
A(S) = cn (m!)lm lW!JX S~S). (3.3) 

m 

We consider all those diagrams of class {l}(So), l~~Il) = 
:0;"=1 V§ l':,/, which consist of Vs 2:: 0 connected parts of 
type {I }(S) , 8 = 1,2, ..•• The contribution of all those 
diagrams in which the l~o) m-point beams, m::::: 1, 2, 
... , are distributed to these connected parts according 
to a fixed scheme is given by 

(so) 
[n (m!r lm (l~o)!)-l] n(A(s»US , (3.4) 

m 

as is obvious from the rules given above. There are 
l~sa)! x ns(l~S) !)-VS possibilities of distributing the 

1~0Q) rn-point beamF to the different connected parts, and 
by taking all these possibilities into account each dia­
gram is counted n;"=1 vs! times. Thus the contribution 
of all diagrams which consist of Vs connected parts of 

a b c 

a b 

C 

FIG.1. Some diagrams 
contributing to I R (j3) rep­
resenting the following 
terms: a) .0" x,, (f3); b) - 1/2 

.0"'2.,X,,(f3) x X'2,,(f3)o'h; 

c) 1/8 .0" ... i Xij (13) 
Xi i (fJ)x i • (f3iO i i 0. i • 

23 4.S 2435 

FIG. 2. Pairs of diagrams giving the same contribution, respectively. 
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type s is given by 

[n (rntrl~o) (l~o)!)-IJ x [n l~So)! n (l~S)!rlJsJ 
m n s 

x n (VSI !fl [A (s'»)"s' = n(vs!)-1[S~S)Jus. (3.5) 
~ s 

Since fIR (,8) - IJ is given by the sum of all different 
diagrams, we find 

lR(m = exp[G{,8)J, 
00 

G(,8) =:0 ~S). 
5=1 

(3.6) 

(3.7) 

These equations constitute the linked cluster expanSion 
(L.C.E.). 

4. THE EXPANSION OF THE EXPECTATION VALUE; 
EQUIVALENT DIAGRAMS 

Equations (2.5) and (3.6) show that the expectation value 
(0) is given by 

(0)::::: ~ ~ J;({3)18=0 + :,8 G(,8) 18=0' (4.1) 

The differentiation of a diagram of class {I} yields 
:0 m 1 m diagrams which differ in the position of the beam 
which has been selected for the differentiation. We rep­
resent the differentiated cluster integral xt1 .. -i ; d/d,8 

II 

x i
1 
.. -in (,8) I 0 by a double beam, and we alter the ordering 

of the beams in such a way that the double beam stands 
left of all others. The thin simple beams now r~resent 
factors xi .•. ; ;Xi1 ... i (0). We define the classtn;l}to 
contain afl different c~nnected diagrams which consist 
of one n-point double beam (standing left of all other 
beams) and 1m m-point Simple beams, m = 1,2, ••• , 
ordered as before. A given diagram of class {nil} is 
created exactly (l!'l + 1) times by differentiation of dia­
grams of class {II J, l'm = 1m if m "" n, l'" = 1" + 1. 
Thus the following theorem holds. 

Thearern 4. 1: The quantity (d/d,8) G(,8) lois given by 
the sum of the contributions of all classes{n; I}. The 
weight factor of the diagrams of class {nil} is equal to 
(n 0-1 n:;=1 (lm 1)-I(m !tlm. 

The diagrammatic representation of < 0) established by 
Eq. (4.1) and Theorem 4.1 contains a lot of diagrams 
which give the same contribution. This is due to the 
fact that (A) permutations of points within a beam (Fig. 
2a) or (B) permutations of simple beams (Fig.2b) do 
not alter the contribution of the diagram. In addition 
(C) all diagrams in which the same sets of points are 
connected by closed loops give the same contribution 
(Fig.2c). We evaluate the consequences of the symme­
tries A and B. Symmetry C eliminates the direction of 
the contraction lines. This direction, however, will 
prove useful in partial summations. Besides this in 
many diagrams the symmetries B and C COinCide, as 
can be seen, e.g., from Fig.2b. 

In the following we are concerned with diagrams of an 
arbitrary fixed class {n;I}. We define sets CA and CB 
of operators which express the symmetries A and B in 
a more precise form. 

Definition 4. 1: The set C A contains all mappings 
FA of{n;l} onto {nil} which are defined by the follow­
ing steps: 

(i) Permutation of the labels of the pOints within each 
(double or simple) beam separately. 
(ii) Shifting of the pOints with the contraction lines 
fixed to them along the beams in such a way that the 
natural labelling (see Fig. 2) is restored. 
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Dejinition 4.2: The set CB contains all mappings 
PB of {n;l} onto {n;l} which are defined in the follow­
ing way: 

(i) Permutation of the labels of all pOints of the res­
pective beams among different simple m-point beams. 
The relative ordering of the labels within each beam 
has to be preserved. 

(ii) Shifting of the beams with fixed contraction lines 
in such a way that the natural labelling is restored. 

The set CA[CB ] contains n! nm (m!) Im[nm1m!] ele­
ments. The mappings PA and PB are special permuta­
tions of the labels of the pOints, except for the shifting 
of points or beams. Thus the following statements are 
obvious. 

Lemma 4.1: 

(i) Let a denote either A or B. If P ex' P; E C ex' then 
P ex X P~ E Cex • There exists an operation p;l E C ex with 
P ex X P-;.l = I. Here I denotes the identity operation. 

(ii) CA n CB = I. 
(iii) If PB E CB , PA E CAt then pB1 x PA X PB = PA E CA. 

As can be seen from Lemma 4.1 the operations PA x PB 
induce an equivalence relation among the diagrams of 
class {n;l}. 

Definition 4.3: Two elementsx,x' E {n;l} are equi­
valent (x ~ x') if there exist operations PA E CAtPB E CB 
such that PA x PBX = x'. We denote by {x} the class of 
diagrams which are equivalent to x. 

Definition 4.4: The symmetry number S(x) of 
x E {n;l} is equal to the number of operations PA x PB ; 

PA E CA , PB E CB with PA x PBX =x. 

Lemma 4.2: If x ~ x', then S(x) = S(x/). For fixed x 
the operations P = PA X PB' PA E CAt PB E CB , can be 
grouped together into groups of S(x) elements such that 
Px = pIX if and only if P and pI belong to the same 
group. 

Theorem 4.2: The equivalence relation (Definition 
4.3) divides the class {n; I} into subclasses {x} of dia­
grams givin~ the same contribution. The number of ele­
ments of {x J is equal to n! n:=l (m !)Im 1m' X [S(x)]-l. 

The symmetry number can be calculated by S(x) = 
SA(x) x SB(X). Here SA(x) is equal to the number of 
operations PA E CA with PAX = x, and SB(X) is given 
by the number of operations PB E CB with the property 
that there exists a PA E CA with PA x PBX = x. Our 
results can be summarized by the following rules. 

Rule 4. 1: Construction of diagrams: A diagram con­
sists out of one double beam and any number of simple 
beams. The Simple beams are ordered at the rhs of the 
double beam in such a way that the number of pOints of 
the simple beams does not decrease as we go from left 
to right. Each diagram is completely connected by 
directed contraction lines. In each point of a beam 
there starts exactly one line and there ends exactly one 
line. No closed loop of contraction lines may touch a 
given beam more than once. 

Rule 4.2: Evaluation of diagrams: 

(i) Label the pOints of the diagram in such a way that 
different points carry the same label if and only if they 
belong to the same loop. 

(ii) An n-point double (simple) beam carrying indices 
i1 ,···,in represents afactorxt1 ... in (xi1 ... i

n
). 
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(iii) Sum over all indices and multiply by S-l X (_I)t+r • 
Here t (r) denotes the number of loops (points) of the 
diagram and S denotes the symmetry number. 

The quantity (d/df3) G(f3) lois given by the sum of the 
contributions of all ineqUivalent connected diagrams. 
In Fig. 3 we have given all diagrams containing up to 
four points. We have omitted the directions of the lines 
where they are not necessary, and we represent a loop 
which contains only one point by the point itself. USing 
our method, we have checked the contributions to (JC) 
evaluated in Ref. 19. 

5. RENORMALIZED EXPANSION FOR AN INFINITE 
SYSTEM 
In the limit A ~ co it is possible to resum the L.C.E. 
in such a way that the result is expressed by two analy­
tic equations.16 This is due to the fact that in that limit 
most of the diagrams vanish, as is shown by the follow­
ing considerations. 

Definition 5. 1: A connected diagram is called simply 
connected if we cannot cut any closed loop by two cuts 
without dividing the diagram into disconnected pieces. 
Otherwise the diagram is called multiply connected. 

Lemma 5. 1: If the asymptotic order of magnitude of 
xi ... i for any n is equal to Aex , then the asymptotic 
of.det'of any simply (multiply) connected diagram is 
equal toAex (Aex-K, K ~ 1). 

Lemma 5.1 expresses a well-known fact, the proof of 
which rests upon the properties of the cluster integrals 
(see the Appendix). It implies that in the limit A ~ co 
we can neglect all multiply connected diagrams (provi­
ded that the L.C.E. converges uniformly in A). Besides 
this in an infinite system the x ,(f3) vanish identically by 
virtue of momentum conservation. 

The structure of a diagram which contributes in the 
limit A ~ co is shown in Fig.4a. The shaded boxes de­
note insertions, i.e., simply connected diagrams which 
instead of a double beam contain one external point with 
fixed index (Fig.4b). We explicitly admit the trivial in­
sertion which contains no beam. 

II! K:=:l ~ ~+~ d 6 
.1 -1 .1/2 .1 -1 -1 

~ ~ + + ~ bd d 
.1/6 -1 .1 .1 -1/2 

.1 -1 .1/2 -1/2 .1/24 

FIG. 3. All diagrams up to the order of four points which contribute 
to (f». Below each diagram there is given the corresponding Sign and 
symmetry factor. 

r t. 
a b 

FIG.4. a) Structure of a diagram contributing in the limit A --. "" • 
b) Examples of insertions. These diagrams contribute the following 
terms: + 1;- L;jx ij ; +L; j

1
i

2 
X iiI X tj2. . 
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Definition 5.2.' The weight factor g i is given by the 
sum of all inequivalent simply connected insertions in 
which the external point carries the label i. The dia­
grams are to be evaluated according to rule 4.2, and 
the external point has to be counted in the sign rule. 

With due regard to Definition 4.4 of the symmetry num­
ber, it is straightforward to prove the following theorem. 

Theorem 5. 1: 

d I 00 1 n 
(e) = ~ - Ji + ~ . ~,Xll'''; IT gi . 

i d{3 8 =0 n =2 n! , ... , ,. K=l K 
1 ,. (5.1) 

The weight factor g i obeys the equation 
00 1 n 

g; = 1 - ~ ~ X ij ... j g i IT g jK • (5. 2) 
n=l n! jl'''j,. 1 n K=l 

Equation (5.2) can be proved by induction with respect 
to the number of cluster integrals. In that proof the 
directions of the lines are important as they establish 
a one-to-one relation between the terms found by itera­
tion of Eq. (5. 2) and the insertion diagrams: If the line 
that starts at the external point ends at the beam 
x ij ••• j , then the diagram contributes to x ;J' ... J' x g i 

1 n 1 n 

IT ~=1 gj • Theorem 5.1 establishes the renormalized 
cluster ~xpansion. It holds independently of the form 
of >It or of e. 
A comparison of Eqs. (5.1) and (5.2) shows thatg; can 
be interpreted as the expectation value of an operator 
which fulfils the relations [see also Ref. 19, Eqs. (44)-( 46)] 

~ J,I =/) .. , 
d{3 J 8=0 'J 

n 

xi ... i = - Xi ... i {~ /)ii }. 
1 n 1 n K=l K 

If we use a special form of >It such an operator can 
easily be identified [see Eq. (6.1) and the Appendix]. 

(5.3) 

(5.4) 

Theorem 5.2: If >It is represented in the particle­
hole form >It = exp(S)q,(see the Appendix for a precise 
definition), the weight factor g i becomes equal to the 
occupation probability Pi = (>It I a: ai I >It) /( >It I >It) of 
the ith single-particle level. 

The renormalization by occupation probabilities is a 
well-known concept in perturbation theory. In the 
framework of a cluster expansion, it has first been put 
forward by Providencia and Shakin.15 Equation (5.2) 
is impliCit in the approach of Feenberg and Wu [see 
Ref. 12, Eq. (14)] who used it as an ansatz for establish­
ing the I.Y. expansion in the limit A ~ co. These 
authors, however, did not realize the important role the 
quantity g i plays in connection with partial summations. 
From an analysis of the first five orders of the factor­
ized I.Y. expansion and from an inspection of the results 
of Refs. 12, 15, the equations (5.1) and (5.2) were 
recently proposed by Ristig and Clark,19.20 indepen­
dently of the present author. These authors also give 

+ CJ + 
~ 

FIG. 5. All diagrams up to the order of two internal points which con­
tribute to P 't', . 
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an interesting formulation of the renormalized expan­
sion which exhibits a relation to expansion methods 
used in statistical mechanics. 

6. RENORMALIZED EXPANSIONS FOR A FINITE 
SYSTEM 

We discuss two different possibilities of generalizing 
the results of Sec. 5 to finite systems. In subsection 6A 
we sum up all diagrams which contain a fixed n-point 
double beam. This procedure is useful only if the re­
sulting weight factor has a physical meaning, and we 
therefore restrict our discussion to the particle-hole 
form of >It. In subsection 6B we give a representation 
of (e) by skeleton diagrams with renormalized lines 
which is applicable to any form of >It • 

A. Summation of all diagrams containing x' i ..• i 
1 n 

We first evaluate the expectation values Pi ... ; of the 
+ + .J n 

operators Pi ... i = ail'" a i a; •.. a i With respect 
1 n n n 1 

to >It = exp(S) <I>. Denoting th~ corresponding differen-
tiated cluster integrals by x? :::;,. , we find from 
Appendix A2 1 m 

(6.1) 

(6.2) 

In Eq. (6. 2) the sum ranges over all permutations P of 
the numbers 1 to n. Due to the simple form of Eqs. (6.1) 
and (6.2) we can represent Pi .. , i by diagrams in which 

1 ,. 

the double beams are replaced by external points. 

Lemma 6. 1.' The expectation value Pi'" i is given 
l 11 

by the sum of the contributions of all inequivalent dia-
grams containing n external points i 1 to in ordered in 
such a way that i l stands below iK if Z< K. Both in cal­
culating the symmetry number and in defining the equi­
valence of diagrams we are not allowed to permute the 
labels of the external points. The diagrams need not be 
connected. They must be connected, however, if we con­
nect the external points by a beam. 

In Fig. 5 we give the first diagrams contributing to 
Pi i . We should note that in going from the representa-

1 2 
tion employing double beams to the representation using 
external pOints the symmetry number is altered. This 
effect can be handled by splitting the symmetry opera­
tions PA x PB into one factor which does not affect the 
points of the double beam and an other factor which 
affects only these pOints. Defining P fl'" in' n ~ 2, by 
the sum of the contributions of all connected diagrams 
with the external points i1 to in, we find from Lemma 
6.1 (see also Fig. 5) 

(6.3) 

Pi l i2 ia = Pil Pi2 Pia + Pil Pi:i3 + Pi2Pi~ i3 + Pi3 Pi: i2 + Pi: ;2;3 ' 

(6.4) 
and so on. We will come back to these results in Sec. 7. 

Turning to the evaluation of the expectation value of a 
general operator e, we first discuss the contribution 
a(l) of the set {O!} of all diagrams containing a one 
point double beam. Substituting the double beam by the 
external point (i) we establish a one-to-one mapping 
f(i) of {O!} onto the set {pJ of dia&rams contributing 
to Pi' If the contribution of y E {O! f is equal to 
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y = 1:;; xjAi' then the contribution of j(i)y is given 
by j(i)y = Ai' Since the range of j(i} exhausts the set 
{Pi} , we find 

<7<1) = 6 x'p.. (6.5) 
. J J 

1 

The contribution to (0) of the set of all diagrams con­
taining an - point double beam (n ~ 2) can be evaluated 
in the same fashion, using .however the diagrams con­
taining the double beam p? ::: J~II and evaluating the dia-

l n 
grams by virtue of Eq. (6. 2). We find the following re-
sult. 

Theorem 6. 1: The expectation value of any operator 
o with respect to w = exp(S) ip can be represented by 

d I AI, 
(0) = ~ d

t1 
Ji + 6 -, . 6. X i1 ••• i Pi .•. i . 

, I-' 6 = 0 n = 1 n. '1' ••• II . n 1 II 

(6.6) 

Applying Theorem 6.1 to Pi and using Eq. (6.1), we find 
A-1 1 

Pi = 1- 6 - 6 X ij '.'j Pij •.• j (6.7) 
n=O n! i

1
."i.. 1 n 1 n 

(6.8) 

and using Eq. (6. 7), we find a representation of (0) where 
also the term (d/df3)J.1 6 =o is renormalized: 

d ' 
(0) = Y d(3 J.1 8 =0 xP. 

+ t ...!... 
n=1 n! 

(6.9) 

Equations (6.6) and (6.7) are generalizations of the re­
sults expressed in Theorem 5.1 and Eqs. (5.1) and (5.2). 

Equation (6.9) resembles a result given by Providencia13 

in the framework of his nondiagonal cluster expansion. 
Equations (6.6), (6. 7), and (6.9) hold identically, irres­
pective of convergence problems. This is proved by 
noting that these equations can be derived directly from 
the unlinked cluster expansions of the expectation values 
involved. 

B. Summation of insertions 

Any part of a diagram which does not contain the double 
beam and which can be separated from the rest of the 
diagram by two cuts affecting one closed loop is called 
an insertion. We close the cut loop via an external point 
which is drawn left of all beams. We explicitly admit 
the trivial insertion which consists only of the external 
point with the attached contraction line and which gives 
the contribution (+ 1). The sum of all insertions con­
taining the external point (i) is denoted by g •• In the 
special case A -7 co this definition coincides with Defi­
nition 5.2. A diagram which does not contain any non­
trivial insertion is called a skeleton diagram. A skele­
ton insertion is defined to be an insertion which can not 
be separated into two nontrivial insertions by twice 
cutting one closed loop. 

Theorem 6.2: The expectation value (0) is given by 
the sum of the contributions of all inequivalent skeleton 
diagrams where each line with summation index i 
carries a factor gi' The weight factor g. is given by 
the sum of all inequivalent skeleton insertions where 
each line j is renormalized by a factor gj except for 
the line starting at the external point. Tile symmetry 
number and the equivalence of diagrams are defined in 
exactly the same way as in the unrenormalized theory. 
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The proof of Theorem 6. 2 is simplest if one first de­
rives the corresponding results for the labeled diagrams 
introduced in Sec. 3. The results for unlabeled diagrams 
then follow trivially since the symmetry operations de­
fined in Sec. 4 are not affected by introducing renormali­
zation factors. 

In Fig. 6 we give the first terms of (0) and ofg i as 
determined from Theorem 6. 2. Theorem 6.2 is another 
generalization of Theorem 5. 1. It holds for any form of 
W. USing w = exp(S)ip, we find from Lemma 6.1 that the 
factor g i coincides with the occupation probability Pi' 

7. SOME SIMPLE REMARKS ON THE CONVERGENCE 
PROBLEM 
Since for A = co the cluster expansion can be expressed 
analytically, it does not seem hopeless to discuss con­
vergence questions, at least for infinite systems. Here 
we will not tackle that problem but rather point out 
some fairly obvious facts which may shed some light 
on certain questions involved in a rigorous treatment. 

We restrict ourselves to finite A and we define a func­
tionH({3,71) by [see Eq. (3.1)] 

A 

H«(3, TI) = 6 TIn 6 S{l}. (7.1) 
11=1 {I}, Em1m=n 

We have the relation /R{ft) = 1 + H«(3, 1), and H«(3, TI) can 
be constructed from /R (ft) - 1 by the substitution 

XiI •• -in «(3) -7 1Jn XiI •• -in (/3). (7. 2) 

For our purpose we can replace XiI ••• i (f3) by 
, n. 

X i~ ••• ill + (3x i 1." i .. , and as a consequence H({3,71) IS a 
pOlynomial of finite order in (3 and 71. Since H(O, 0) 
vanishes there exists a neighborhood in C x C of 
«(3,71) = (0,0) in which In[1 + H({3, ,,)] can be expanded 
into an absolutely convergent series 6K~1 1JK aK (f3). It 
is easily proved that this series represents the L.C.E. 
in which the substitution (7. 2) has been carried through. 
By differentiation with respect to (3 we find that the 
radius of convergence of the L.C.E. of the expectation 
value in the complex TI plane is determined by that solu­
tion of the equation 

F(1/) = H(O,1/) + 1 = 0 (7.3) 

which is nearest to 1/ = O. The radius of convergence 
depends only on w and not on the operator involved. This 
result, however, may be a special feature of the finite 
system. 

U sing the form w = exp(S) ip, we can introduce the para­
meter 1/ into the wavefunction itself by the substitution 
s(n) -71/,,/2 s(n), 1/ 2: 0 [see Appendix A2], and the L.C.E. 
for 1/ 2: 0 becomes identical to the expansion of 

(w(1/)101 w(1/»/[(iplip) + (w(71) - ipl>JI(71) - ip)] (7.4) 

a /II + = + ~ + ~ + ~ + 

FIG. 6. a) First diagrams which in finite systems contribute to (0) 
according to the renormalized expansion. b) First diagrams of the 
expansion of the renormalization factor. All but crossed lines are re­
normalized. Renormalized lines containing only one point are repre­
sented by the point itself. The directions of the lines are only given 
where they are important. 
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in powers of 1]. (This result shows that the methods used 
in Refs. 9,10 give the same expansion as our method.) 
The coefficient of 1]K. in F(1]) is equal to (X k 1 Xk) ~ 0, 
where Xk denotes the (unlinked) k-particle k-hole ampli­
tude of lJ.i. Thus F(1]) has the following properties: 

(i) F(O) = 1; 

(ii) F(l) = (lJ.i 1lJ.i); 

(iii) I F(1]) - 11 ~ F( 11] I) - 1; 

(iv) (dldT/) F(T/) ~ 0 if TJ ~ O. 

USing these relations, we can establish the following 
lemma. 

Lemma 7. 1: The L.C.E. converges if (lJ.i 1lJ.i) < 2. 
The expansion diverges if (lJ.i 1lJ.i) > 2A. Better esti­
mates cannot be obtained without restricting lJ.i. (Note 
that lJ.i is normalized according to (lJ.i 101» = 1). 

In view of Eq. (7. 3) the first part of that lemma is proved 
by noting that (lJ.i Iw) < 2 implies I F(17) - 1/ ~ F(I11I)-l 
~ F(l) - 1 < 1, if 111 I ~ 1. The second statement is ob­
vious if we represent F(r/} by 

F('q) _ ~ (_11 __ am ~L!l _ _ a;; jAn2M(~+ 1\. 
- m 1 I a m I I a m I) \1 a mil ami) I = 1 b I ) 

(7.5) 

Here the quantities am,a:', m = 1, ••• ,M denote the 
pairs of complex zeros of F(17) and the {-b 1),1 = 1, ... , 
A - 2M denote the zeros on the negative real axes. In 
deriving Eq. (7. 5) we have used properties (i) and (iv). 
The estimates cannot be improved without restricting 
w as is shown by the examples F(1]) = 1 + 17K and 
F(1]) = (TJ/(l + e) + l)A, € > 0, respectively. Note that 
the results of Ref. 21 are consistent with the estimate 
(w Iw) < 2. 

Equation (7.5) shows that the L.C.E. will converge for 
(w Iw) ~ 2A only if the zeros of Fe-q) are concentrated 
near the unit circle. We see no reason why in phYSical 
applications F(TJ) should show that behavior, and we be­
lieve that the upper bound of the radius of convergence 
established in Lemma 7.1 is much too big. In view of 
the first part of Lemma 7. 1 we feel rather pessimistic 
concerning the convergence of the unrenormalized ex­
pansion in physical problems. The convergence proper­
ties of the renormalized expanSion may be much better. 
This hope is based on the observation that the renor­
malization partially resums the expansion of the nor­
malization denominator in Eq. (7.4). Besides this the 
identity (6.6) also seems to favor the renormalized 
theory. 

In the limit A ~ co a necessary condition for the conver­
gence of the cluster expansion is given by the equation 
limA .... "" Pi .• , t = n~=l Pi" which is found by a com-

I n 
parison of Eqs. (5.1) and (6.6). Equations (6.3) and (6.4) 
show that this condition is equivalent to the vanishing of 
pf ... i ,which in the diagrammatic representation em-

I n 
ploying double beams contains only multiply connected 
diagrams. This condition seems to be directly related 
to the short range nature of the correlations which is 
assumed in the cluster expansion. The B.C.S. wavefunc­
tion, for instance, violates it because of the long-range 
correlations between certain pairs of particles. 

8. COMPARISON WITH OTHER APPROACHES 

We have shown that the I.Y. expansion has a very simple 
structure. This fact, however, to some extent is compen­
sated by the relatively complicated structure of the clus-
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ter integrals. The n -point cluster integral contains 
parts which describe a product of several clusters of 
less than n particles which are bound together by an 
exchange of single-particle functions. We can isolate 
these «reducible" parts by defining nondiagonal irredu­
cible clusters13 , 19 (see Appendix AI), and the terms of 
the L.C.E. developed here can be absorbed as diagonal 
elements into an L.C.E. in terms of products of these 
irreducible clusters. This idea is systematically carried 
through in Ref. 13, and it is implicitly used in Ref. 14. 
Compared to the I.Y. expansion, it has the advantage that 
the cluster integrals are simplified without complicating 
too much the L.C.E. in terms of these quantities. (How­
ever, there are indications that the renormalization is 
more complicated.) 

On the other hand this treatment mixes the effect of 
the narmalization of the wavefunction with the effect of 
the antisymmetrization. Indeed, the reducible parts of 
x· ... i (fi) are present already in the unlinked expansion 

'I n 
and vanish if we omit the anti symmetrization operator in 
Eq. (2.1). The diagrams containing several cluster inte­
grals, which are mixed with these reducible parts, arise 
by transforming the unlinked into a linked expansion. 
From the discussion of Sec. 7 it is clear that we equiva­
lently can interpret these diagrams to be created by 
dividitW; out the normalization denominator (>J! /w)-l, and 
thus these terms keep track of the normalization. They 
occur independently of the symmetry of the wavefunc­
tion. Thus we believe that there is no reason to treat 
these two types of terms on the same footing. 

Especially we feel that it is a good procedure to renor­
malize the expanSion in the way given here as we thus 
resum diagrams which are created by the same physi­
cal effect. In connection with variational methods the 
renormalization most probably will resolve the "Emery 
difficulty," 22 which is caused by the fact that in the 
lowest order of the I.Y. expansion there is no mecha­
nism which prevents the trial wavefunction from build­
ing up an arbitrarily strong correlation within the inter­
action region of each pair of particles, and thus gaining 
an indefinite amount of binding energy. Clearly the re­
normalization would supply us with such a mechanism 
as it takes into account the norm of W, which also in­
creases if we build up such a correlation. In a further 
publication we will come back to these problems, which 
are related4 •15 to the self-consistence of single-particle 
energies used in Brueckner theory. 
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APPENDIX; DIAGRAMMATICAL REPRESENTATION 
OF THE CLUSTER INTEGRALS 

1. Product form of w 
Irrespective of the nature of the symmetric operator tl 
the reduced subnormalization integral [Eq. (2.4)J sym­
bolically is written in the form 
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(A1) 

Here oem) is the m-body part of 0 and the symbol i de­
notes the im~e P(i) of the index i under the permutation 
P of the set {Kl>'" ,Km }. The correlation functions by 
definition fulfil the symmetry relations 

f,._ "'i_ (iI, ... , iii) = h ... i (il> ••• , in) for all P{1, .. • n}. 
'1 n 1 n 

In the diagrammatic representation a simple (double) k­
body link [Fig. 7a (b)] connecting the points i l to iK rep­
resents a factor fr: .. :,)il , ••• , iK)fil .•• iK(il> ••• , iK)-1 

[ * - (. .) "" (K) ( • . ) fi ..• i K tl"",ZK X v Zl"",ZK 
1 

Xfil···iK(il, •• ·,iK)]' 

A [crollsed] directed line connecting the point i to the 
point i represents the integration over the coordinates 
of the ith particle with the weight factor qJ1(i) qJi (i) 
[qJ; (i) O(l)(i) qJi (i)]. The lines thus fix th~ pe~mutation 
considered. The cluster integral Xi "'i IS gIven by 

1 n 
the sum of the contributions of all different connected 
diagrams which are constructed according to the follow­
ing rule. 

Rule AI: (i) Draw n points labelled from left to 
right by i l to in' (ii) Draw a structure of directed lines 
such that in each point there starts and ends exactly 
one line, respectively. (iii) Draw any number of Simple 
r-body links (1 :s r :s n). An r-body link connecting a 
definite set of points may occur only once. (iv) Each 
point must be connected with at least one link. 

The rules for evaluating a diagram are obvious. The 
sign is given by (- 1),,-l, where 1 is the number of 
closed loops of integration lines. In Fig. 7c-e we pre­
sent some examples which give the following contribu­
tions: 

(c) f d l ( Ifi (1) 12_1) 1 qJi(1) 12 , 

(d) - f d 1d 2 [f/(2)fi (2) - 1Hh*i (1,2) hi (1,2) - 1] 
1 2 21 12 

X qJ;*(1) qJi (1) qJ;* (2) qJi (2), 
2 1 1 2 

(e) - f d 1d 2 [1;*i (1,2)1; i (1,2) - 1] 
1 3 1 2 

X 1 qJ i (1) 12 qJ;* (2) qJi (2) f d 3d 4 [1; *i (3,4) 
1 3 2 2 4 

x 1; i (3,4) - 1] 1 qJi (4) 12 qJ/(3)qJi (3). 
3 4 4 2 3 

Evaluating the expectation value of o(m), m 2: 2, we de-
termine x~ ., n 2: m, by the rules given above ex-

'1 ... • 
cept that we add the statement: (iiia) Each diagram con-
tains exactly one double m-point link. If we are con­
cerned with the expectation value of a one-body operator, 
then xi i is given by xi ... i = Xi ... i - Xi1 ... i 1 0 

•• n 1 n 1 n n 
"n (i 10(1) 1 i ) where X. . is constructed accord-UK=1 K K , .1 .. ·.n 
lng to Rule A1 altered in the following respects. (ii~) 
Exactly one line is crossed. (iva) If n 2: 2, the startIng 
point of the crossed line may be excepted from state­
ment (iv). Depending on the exact choice of W these 
rules can be considerably simplified. 

We now use that representation to exhibit the asymptotic 
behavior of Xi ••. i , a proof of which to our knowledge has 
not been give~ in fue literature. In the limit A ~ 00 the 
functions qJ. are taken to be plane waves and by virtue 
of momentu'm conservation all fi(i) are identical to one. 
All one-body links are zero and the directed line (i) 
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a b 

FIG. 7. a, b) Basic ingred­
ients of the cluster integ­
rals for the product form 
of >It. See the text for a 
definition. c) to e) Exam­
ples of diagrams contri­
buting to Xi' X i

l 
i2' 

Xilj2i3~4' respectively. 

c 

carries definite momentum k i • We use the term "irre­
ducible" cluster to denote any part of a diagram which 
is completely connected by links and which is not a part 
of a bigger structure with that property. Each diagram 
contributing to Xi ... i contains m, 1:s m :s n /2 irredu-

1 n 
cible clusters. A typical diagram containing two irredu-
cible clusters is given in Fig.7e. By virtue of the short 
range character of the correlation functions and of the 
normalization (qJi 1 qJ) = 1, the integration over the (r) 
coordinates of an irreducible cluster yields an expres­
sion of the asymptotic order Q1-r = pr-1A1-r where 
Q and p denote volume and density of the system, res­
pectively. Furthermore, conservation of momentum 
yields a li function li[L; kin - L; kDut] where kin (kDut) 
denotes the momentum of an ingoing (outgoing) line. It 
is easily proved that exactly (m - 1) of these li functions 
are independent. As a result any term which contributes 
to x . . and which consists of m irreducible clusters '1··· , 
asymptotically behaves like pn-m A m-n and in addition 
contains (m - 1) independent li functions connecting the 
indices i1 to i . Similar results can be deduced for the 
differentiated ncluster integrals. The asymptotic beha­
vior of x· . as derived here, underlies Lemma 5.2. '1·· ·'n 
The irreducible clusters constitute the basic quantities 
of the L.C.E. constructed in Ref. 13. 

2. Particle-hole form of w 
This form of w is defined13 •15 by w = exp(S)cJ.> where, 
in obvious notation, cJ.> = a~ . .. ai 10) is the unperturbed 
ground state and S is given by S = L;: =1 Sc,,) , 

Sen) = _1_ L; Sb1 .. ·a,. ai, ••• ai, a i ••• ai' (A2) 
2 < '1···2. n nIl n (n!) i 1 ,,·in -A 

b 1• .. bn>A 

for all permutations p{ 1, ... , n}. 
The wavefunctions wK K are defined in obvious 

1'" m 
fashion. We introduce pairs of points connected by a 
(not directed) vertical line to represent the states iK • 

The diagrams contributing to Xi ••• i are constructed 
1 n 

and evaluated according to the following rules (see also 
Ref. 13). 

Rule A2: (i) Draw n pairs of points which from left 
to right are labelled by the indices i l to in' (ii) Ea~h 
lower (upper) point is touched by exactly one hangmg 
(standing) link. (iii) In each lower (upper) point there 
starts (ends) exactly one directed contraction line. 

Rule A3: (i) Label the lower (upper) point of the pair 
i by a (b). (ii) A hanging (standing) link connecting 
KKK. . f t SaK ... ax the points iK to Zx contrIbutes a ac or iv 1 ... i r 

1 r .al Ar 

(Sbxl '" .OX r *). (iii) A directed contraction line connecting 
z-K1o··'K r . . 

the pOints ax and bl contrIbutes a factor liax bl' (IV) 
Sum all indices ax, bx independently over all states 
a > A and multiply by the factor (- 1)n-1 a -1. Here 1 is 
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b~ 
FIG. 8. a) Diagrams contributing to the (not differentiated) cluster 
integrals for the particle-hole form of >11. b) Diagrams contributing 
to the differentiated cluster integrals. 

the number of closed loops consisting out of contraction 
lines and nondirected lines connecting a pair iK' and a 
is the symmetry number. 

The equivalence of diagrams and the symmetry number 
are defined below. In Fig. 8a we give some examples 
which give the following contributions: 

L; 1 S,a 12; L; S~lS~2Sa1a2*. - L; S~lSa2*Sa1*. 
11 '2 1.11.2 ' '1 '1 '2 a>A a 1a 2 >A a}Q

2 
>A 

A diagram is called connected if we cannot separate it 
into two parts without cutting a line or a link (or a beam 
representing the operator). The cluster integral 
x i1 ••• i

n 
is given by the sum of all inequivalent connected 

diagrams. 

In order to represent the expectation value of the (sym­
metric) m-body operator 

0= (~!) :1 ••• ctm~81"'8m 
0" ... " 8 "'8 a";. .•. a:' a8 •• • a8 , (A4) 

1 m' 1 m 1 m m 1 

we again introduce the quantity Xi ... i = x~ ... i + 
1 n 1 n 

Xi1"' i ,. X L;~=1 0iK ,iK' where the last term contributes 
only if m = 1. Xi , •• ; is given by the sum of all inequi-

1 n 
valent connected diagrams constructed according to the 
following version of Rule A2. We add: (ia) Draw a hori­
zontal beam with m pOints. In each point of that beam 
there ends one contraction line starting at a lower point 
iK and there starts one contraction line ending at an 
upper point il' We alter (ii) into (ii'): Each lower (upper) 
point is touched by at most one hanging (standing) link. 
It must be touched by a link if it is not connected to the 
horizontal beam by one contraction line. Examples are 
given in Fig. 8b. 

From Xi the trivial diagram (Fig. 8b, the first diagram) 
1 

has to be excluded. The contribution of a diagram is 
calculated according to Rule A3, supplemented by the 
following statements. (ia) The line ending (starting) at 
the jth point of the horizontal beam is labelled by 
(3j (OI j ). The beam represents 0"1'" ct ,8 ... 8 • (iiia) 

m 1 m 
Use the corresponding 0 factors to eliminate the OI} and 
{3j' If a point OI j ({3j) is contracted with a point iK not 
attached to a link, the li factor is liiKctj (liiK 8

j
); otherwise 
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it is libKctj (li aK Bj)' According to these rules the contri­
butions of the last three diagrams of Fig. 8b are given by 

By virtue of the symmetries of 0 two diagrams which 
differ only in the ordering in which the contraction lines 
are fixed to the m-point beam are taken to be identical. 
Taking into account the symmetries of sen) ,we can 
characterize the symmetry operations P, which leave 
the contribution of a diagram unchanged in the following 
way: (i) Permute the labels ai' b i among themselves in 
such a way that we interchange only labels which are 
attached to the same link. (ii) Shift the points along the 
links with the contraction lines fixed to them in such a 
way that the original labelling is restored. Two dia­
grams X and X' are equivalent if there exists a P with 
P X = X'. (Remember that the ordering in which the 
lines are attached to the beam is irrelevant.) The 
symmetry number a(X) is equal to the number of opera­
tions P with PX = X. 

According to these rules it is easy to prove that the 
cluster integrals xi ... i corresponding to the operators 

+ + 1 n • 
p. . = a· .• ·a· a· ..• a· are gIven by Eqs (6 1) 'l···'m '} 'm 'm '} . • 
and (6.2). 
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Schrodinger equation with a random potential: A 
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We present a new functional integral approach to the average density of states of a quantum particle 
in a random potentiaL As an illustration of the method, the formulas are explicitly evaluated for 
some one-dimensional problems; results previously obtained by other methods are recaptured, The 
formalism for the study of wavefunction localization is also derived, 

I. INTRODUCTION 

In recent years, and probably because of the technolo­
gical importance of amorphous solids, a great deal of 
work has been done on the electronic structure of dis­
ordered materials. The natural starting point for an un­
derstanding of their properties is a knowledge of the one­
electron spectrum, and the nature of the associated wave 
functions. In crystalline materials, the Bloch- Floquet 
theorem immediately reduces the study of the whole 
crystal to the study of one elementary cell, thus reducing 
the difficulty enormously. Unfortunately, no analogous 
theorem exists for the disordered case, and one is con­
fronted in prinCiple with the formidable task of diagona­
lizing a random matrix of order 1023 . Several methods 
have been developed to deal with this problem, but the 
mathematical difficulties involved are of such magni­
tude that our understanding of the problem is still far 
from being satisfactory. 

A few idealized problems in disordered materials are 
at present known in which the energy spectrum (but 
generally no transport properties) can be computed exact­
ly. Dyson1 found th~ frequency spectrum of a linear 
chain of oscillators with random masses and spring con­
stants (equivalent to the density of states of a one-dimen­
sional tight-binding alloy with nearest neighbor hopping, 
and with random on-site energies and hopping elements), 
Frisch and Lloyd2 derived the electron spectrum in a 
random set of O-function potentials on a line, and Hal­
perin3 solved the same problem for a random one-di­
mensional potential which may have an arbitrary prob­
ability distribution at any given point, but must have the 
property that any two pOints are statistically indepen­
dent. In the same paper, Halperin also sets up the for­
malism for transport properties, but does not do any 
actual calculations. The formulas are hard to evaluate, 
even with modern electronic computers. 

In three dimensions, the only exact solutions are the 
density of states found by Lloyd4 for the tight-binding 
alloy with a Lorentzian distribution for the on-site energy, 
and a generalization thereof studied by Eggarter, Cohen, 
and Economou,5 in which they have incorporated short­
range order in the Lloyd model. In both cases the pos­
sibility of solving exactly is due to a particular property 
of the Lorentzian distribution (only one pole on each side 
of the real axis), and the elegant result obtained (average 
denSity of states = pure crystal density of states con­
voluted with probability density for on-site energy) is 
only valid in this special case and provides no help for 
understanding other three-dimensional situations. 

Among the approximate methods, the most widely used 
is certainly the "coherent potential approximation" 
(CPA),6,7 which in several cases seems to describe the 
overall band structure reasonably well. But it fails near 
the band edges (the most interesting region in semi­
conductors); it has also been shown recently8 that in the 
strong scattering limit the density of states of a binary 
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alloy has considerable structure in the center of each 
subband, a fact which is not even qualitatively described 
by CPA. 

The determination of transport properties involves 
even greater difficulties than the energy spectrum, 
since in addition information on the wave functions is 
required. Mott, and Cohen, Fritzsche, and Ovshinsky 9 

have conjectured that a disordered material exhibits 
energy bands inside which there are "mobility edges" 
separating extended from localized states. Considerable 
effort has been devoted to prove this conjecture, but no 
clean proof has so far been given. Anderson's original 
work,10 and several extensions thereoff,ll,12 are based 
on the idea that the convergence of a certain renorma­
lized perturbation series is equivalent to localization of 
the eigenstates of the Hamiltonian under consideration. 
The energy enters as a parameter in the series, so that 
the determination of mobility edges reduces to finding 
the energies at which the series changes from conver­
gent to divergent. This idea can not be rigorously true; 
in the case of a one-dimensional tight-binding nearest­
neighbor -hopping perfect crystal the eigenstates are 
extended (Bloch states), while the renormalized pertur­
bation series reduces to a finite sum (just two terms) 
for this problem. It has also been attempted to decide 
the question of localization by studying some appropriate 
series or other expression for the ensemble averaged 
Green's function (G(E». These efforts cannot be fruitful; 
it was shown recently 5 that the process of averaging 
over an ensemble of potential configurations destroys the 
information on the localized or delocalized character of 
the wave functions contained in G(E). Percolation theory 
has also been used to study localization. For a classical 
particle in a random potential the Mott-CFO conjecture 
is easy to understand; 13 the mobility edge coincides 
with the percolation threshold. But the percolation treat­
ment neglects interference phenomena, which may be 
important. Consider as an example the one-dimensional 
problem with a potential V(x) bounded from above. Let 
Vo = sup{V(x); - 00 < x < oo}. Borland14 has shown that 
all states are localized in one dimension, so that no mo­
bility edges exist. But the percolation threshold exists 
and is at VO' The localization here is due to the wave 
nature of the particle, which percolation theory does not 
describe. The same considerations apply to a three­
dimensional separable potential V(r) = V I(X) + V2(y) + 
V 3 (z). 

It is the authors belief that new mathematical methods 
will eventUally have to evolve in order to provide a 
better understanding of the above questions. If this 
belief is correct, the search for new approaches to the 
problem constitutes a worthwhile effort. 

In this paper, we present one possible alternative 
approach, based on a conceptually very simple idea. For 
an arbitrary wave function 1/I(r) , the potential V(r) which 
has 1/1 as an eigenstate of energy E can be written down 
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immediately by solving the Schrodinger equation for 
V(r). If, moreover, a probability density is given in the 
space of all possible potentials, this can be converted to 
a probability density in l/I space. Integration over all of 
l/I space wi th fixed E then gives the density of states, 
while integration over some selected subset in l/I space 
(integration over all "localized" states, for example) 
could given information on the nature of the wave func­
tions. The mathematical difficulties in carrying out 
this program will of course be considerable, and have 
not yet been fully explored. 

In Sec. II, we set up our formalism: an equation for the 
average density of states as an integral over l/I space is 
derived. The way in which the functional integrals can 
be evaluated as the limit N -7 co of N -dimensional inte­
grals is discussed. In Sec. III, we consider as specific 
examples two one-dimensional problems, and show that 
our formalism permits to recapture the exact solution 
of the Dyson problem as given by Economou and Papa­
triantafillhou,15 and the Frisch and Lloyd solution2 of 
the a-function problem. In Sec. IV, we discuss the ques­
tion of localization in the present context without being 
able, unfortunately, to work out any specific examples. 

II. FORMALISM 

We consider the Schrodinger equation 

- 'ill/l + V(r)l/I = El/I (1) 

and suppose for Simplicity that (1) has to be solved in a 
finite volume n with some appropriate boundary con­
dition on l/I at an. For a given VCr), the density of states 
is usually expressed in terms of the Green's function 

G(z, V(r» == (z - H)-l (2) 

by the well-known equation 

peE, VCr) = - (1/1r) 1m TrG(W, V(r». (3) 

We will be interested in the case that VCr) is a ran­
dom function, and our aim will be, among other things, to 
compute the average density of states 

peE) = (p(E, VCr))). (4) 

The fact that VCr) is a random function can be stated 
mathematically by saying that a probability measure dll 
has been given on the function space X of all possible 
potentials V(r), so that for any subset U c X 

Prob[V(r) E U] = fu dll • (5) 

In order to make our formulas more transparent, we 
will also use the notation16 

dll =f[V(r)]:D[V(r)], (6) 

suggesting that a probability density f [V(r)] is associated 
with each point of X. In this notation :D[V(r)] stands for 
a "volume element" in the function space X. 

The average density of states can then be written as 

p(E) = - ~ fIm TrG(E+, V(r»f[V(r)]:D[V(r)]. (7) 

One difficulty in the explicit evaluation of (7) is that 
the functional G(z, V(r» cannot be written down explicitly. 
Perturbation expansions for G, moreover, are hard to 
handle because G has closely spaced poles on the energy 
region of interest. 
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The alternative approach we want to propose is based 
on the observation that, although the computation of the 
eigenvalues and wavefunctions for a given VCr) is dif­
ficult, the inverse problem is trivial. If a wavefunction 
l/I and the corresponding energy E are given, the potential 
which gives rise to l/I as an eigenfunction of energy E is, 
according to (1), 

VCr) = tl.l/I/l/I + E. (8) 

Using this fact we can derive an equation for peE) as 
an integral over the space Yof all possible wave func­
tions l/I(r).17 Equation (8) defines a mapM: Y x R -7X; 
it assigns a potential V(r) to each pair (l/I, E). This map 
will not be one-to-one since for a given VCr) there exist 
infinitely many eigenfunctions. However, for a suffici­
ently small neighborhood A of any point p = (l/I,E) E Y 
x R the correspondence between A and M (A) given by (8) 
is one-to-one.18 We define a measure dil on Y x R by 
the condition that for any such suffiCiently small set A 

fA dil = fM(A) dll. (9) 

This measure can then be extended to all of Y x R in 
the usual way. In our more explicit notation we write 

dil = f[V{l/I(r) , E}] \J \:D[l/I ]dE, 

where J = J(l/I, E) is the appropriate Jacobian of the 
transformation (8). 

We will now prove that 

peE) = t jy/[V{l/I,E}] \J\:D[l/I]. 

(10) 

(11) 

For this purpose, let us define as V k(E 0) c X the set 
of all those VCr) which have exactly k eigenvalues below 
Eo' Obviously 

V k(Eo) n V k,(E o) = cJi..= empty set) if k '" k', (12) 

U V k(Eo) =X. 
k=O 

(13) 

We define the integrated density of states :n(E o' V(r» 
by 

:n(E o' V(r» = k iffV(r) E V iEo); (14) 

this quantity is related to the average density of states 
in the usual way 

J
EO 

(:n(E o, V(r») = _"" p(E)dE. (15) 

Consider next the integral 

1 f - 1 lEo J F(Eo) ="2 YX(_"",Eo)dll =2" -00 dE y![V(l/I,E)]\J\:D[l/I]. 

(16) 
As the point (l/I,E) sweepsouttheregionYX(-co,Eo), 

each V(r) E V k(E 0) will appear exactly 2k times as an 
argument in f, since it appears each time p coincides 
with one of the eigenstates (l/I;,E i ) of V(r),and there is 
a trivial deneneracy between + l/I i and - l/I i which 
accoun~s for the factor t. Therefore, using Eq. (9), we 
can Write 

1 "" 00 

F(Eo) = 2" 6 2k fVk(E ) dll = 6 fv (E ) 
k= 0 0 k=O k 0 

:n(Eo' V(r»dll :::::: fx :n(Eo' V(r»dj.L = (:n(Eo' V(r». (17) 

Combining Eqs.(15),(16),and (17) we have established 
the validity of (11). 
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Equation (11) has a clear geometrical meaning: the 
integrand f[V(1/I,E)] IJI represents the probability den­
sity in 1/1 space that a given wave function will occur as 
an eigenfunction of energy E. The average density of 
states involves an integration over :D[1/I] because we are 
only interested in having an eigenvalue E, regardless of 
what the eigenfunction is. In this sense Eq. (11) is much 
more transparent than the usual expression (7) for ptE). 
A further advantage is that no divergences, or complex 
quantities, which are present in (7), occur in (11). The 
main problem with (11) is the evaluation of the Jacobian. 
We will later present explicit calculations of this quan­
tity for one-dimensional problems. As usual, we can 
express our functional integrals as the limit N ~ <Xl of 
N-dimensional integrals. For this, we divide space into 
an infinitesimal cubic lattice (spacing = 1), we label our 
lattice points by an index i = 1, 2, ..• , N, and put 

1/I(r i) == a i • 

The finite difference expression for the Laplace opera­
tor is then 

tt,1/I(r j ) "" 1)-1 (L); aj - za,), (18) 

where Z is the coordination number (dependent on the 
number of dimensions), and L); indicates a sum over all 
those j's which are neighbors of i. The Schrodinger 
equation (1) now becomes 

Here we have made the identifications 

W = 1)-2 

fi = V(r i) + Z1)-2. 

(19) 

(20) 

(21) 

Equation (19) is precisely the eigenvalue equation for a 
tight-binding, nearest -neighbor -hopping Hamiltonian, 
widely used in the alloy problem. Once we know how to 
handle (19), the continuum case will be recaptured by 
letting 1) ~ 0 in the final results. Equation (8) which 
gives the potential in terms of the amplitudes {ail be­
comes now 

(22) 

Our integration in 1/1 space involves only wavefunc­
tions satisfying some normalization condition L)f a~ = 
u~, it is therefore natural to introduce polar coordinates 

a1 = U COSep1' 

a2 = U sinep1 COSep2' 

a N-1 = U sinep1 sinep2' .. COsepN-1' 

aN = U sinep1 sinep2 •. , sinepN_1' 

(23) 

and to take {ep1,ep2"" ,epN-1,E} as independent variables. 
The normalization constant U o disappears from the prob­
lem, as can be seen from (22). If f({€J) is the probabil­
ity density in f space,19 our Eq.(l1) for the density of 
states becomes 

1 1 { } I a (€ l' ••• , € N) I 
ptE) = -2 dep1' •• depN-d( € i) "('" '" E)' 

U'f'l'···''+'N-l' 
(24) 

It is possible to transform this into an integral over 
all wavefunctions, normalized or not. For this we 
write 
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ptE) =} 1 dep1" • dcpN-1 1000 

duc5(u - uo)f({€J) 

I a(€l"'" EmU) I 
x 0(4)1''' ,epN-1,u,E) 

1 roo 00 

=2" J-oo '" 1-ooda1'''da~(u-uo)f({€i}) 

I a(€1>"" €N'U) II a (ep1'" ·4>N-1,u,E) I 
x a(ep1"" ,epN-1,u,E) a (a 1, ••• ,aN,E) 

1 roo { } I a(€l>"',€m u ) I =-2 J-ooda1"'da~(u-uo)f( €j) a( E) • 
a1,'" ,aN' 

(25) 
Next we notice that ptE) is actually independent of u o' 

We therefore pick an arbitrary function X (u o) with the 
only condition that 1000 X (u)du = 1; we multiply both sides 
of (25) by x(uo)duo and integrate to get 

ptE) = ~ 1-: ... J: da 1' •. daNX [(L) a~) 1/2Jf({€i}) 

la(€1'€2, .•• ,€m U)I. (26) 
a(a1,'" ,amE) 

The function X may eventUally be so chosen as to 
facilitate the evaluation of the integral (26). 

All this applies equally well to any number of dimen­
sions. We will next consider some specifiC one-dimen­
sional problems and evaluate the above formulas. 

III. THE ONE·DIMENSIONAL CASE 

We begin by studying the discrete eigenvalue problem 
defined by Eq. (19), without making reference to any 
underlying continuum. This is the Dyson problem,l 
which appeared first in the study of the spectrum of 
eigenfrequencies of a linear chain of oscillators with 
random masses. We will interpret it here as the eigen­
value problem for an electron in a tight-binding band. 
We lable our points or sites from left to right by an 
index i = - N, - N + 1, ..• ,0,1, .. . N, and, since some 
boundary conditions have to be imposed, we assume 
amplitude zero to the left of -Nand to the right of N. 
[This amounts to saying that there are impenetrable 
walls at -(N + 1) and at N + 1.] Equation (19) can then 
be written more explicitly as 

LN = E + W(a_N+ da-N)' 

€j = E + W(ai-da i + ai+dai)' 
(27) 

i=-N+l, ... ,N-l, 

It is clear that the most natural choice of independent 
variables now is not the set of polar angles of Eq. (23), 
but instead the set Hj,E} where the ~,'S are the ratios 

~i == ai+/ai> i =-N,-N + 1, ... ,N-l (28) 

in terms of which 

€, = E + W(~i + 1/~i-1)' 

€N = E + W/~N-1' 

i =-N + 1, ... ,N-l, 
(29) 

The Jacobian can now be written down 
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W 0 0 

W 
W 0 

~~N 

0 W 
W 0 ---

I a(€-N' e N+1'··· €N) 1- ~~N+1 
J = a(LN , ••• , ~N-1,E) -

0 

We have written the last term of (30) in such a way as 
to show explicitly that all sites from - N to N are in­
cluded. Expanding the determinant in the last row and 
using the same notation we obtain the recurrence 
relation 

J(-N,N) = WN-(-N) + (W/H'_l)J(-N,N - 1), (31) 

from which, by iteration, 

We will write this as 
N 

J(-N,N) = W2N ~ (~N-1~N-2· ··~s)-2 
s=-N 

(32) 

(33) 

with the explicit convention that the term s = N (unde­
fined so far) is unity 

Our Eq.(ll) written in terms of the ~i'S is 

p(E) = 1-: ... 1-: dLN•• ·d~N_1f[{€J]W2N -£ 
s=-N 

(~N-1~N-2···~st2 (34) 

The factor t in front of the integral is absent here 
because each set {€ j} corresponds to a pair of wave­
functions + "" and - "". To further simplify matter s, we 
will consider the case in which all €t's are statistically 
independent so that the probability density f[{€j}] fac­
torizes in the form 

N 
f[{€J] = j~N g(€j) = g(E + WLN)g(E + WLN+1 + W/LN) 

••. g(E + W~N-1 + W/~N-2)g(E + W/~N-1)' (35) 

with g(€) = probability density for a single site. 

Inserting (35) into (34) and making the change of 
variable u i = W~ i (all i) in the integrals, we obtain 

N 

p(E) = ~ 1-:... 1-: du_N• •• dUN_1g(E + u-N) 
s=-N 

x g(E + u-N+1 + W2/UN) ••• g(E + W2/UN-1) 

W2(N-s) 
x • 

(uN-1uN-2·. ·u.)2 
(36) 

It is now convenient to define two integral operators 
K1 and K2 which act on an arbitrary function h(x) in the 
following way; 

(37) 

(38) 
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0 1 

0 1 

0 1 

- J(-N,N). (30) 
W 

W 1 
~~-2 

0 
W 

1 
~~-1 

Each term in the summation Eq. (36) can be interpret­
ed as follows: integration overu_N,u_N+l! ••• ,us-1 
amounts to'applying K1 N + s times in succession to the 
function "1 (x) = g(E + x). Integration over UN-l' UN- 2' 
••• 'U s+1 amounts to apply K2 N- s - 1 times to the 
function" 2(x) = g(E + W2 / x). Finally, the integration 
over Us gives the density of states as 

N co 
p(E) = s P-N 1-co du s(Kf+S" 1) Ius (K~-s-1"2) Ius. (39) 

It can be shown20 that, provided g is reasonably well 
behaved, the limit 

lim Kt"1l z =¢(x) (40) 
A->co 

exists and is given by the solution of the integral equa­
tion 

¢(x) = 1-: ¢(y)g(E + x + W2/y )dy, (41) 

supp!emented by the normalization condition 1-: ¢(x)dx 

= 1-co "1(x)dx which in our case is simply 

(42) 

The convergence in (40), moreover, is uniform in x. 
Similarly, there exists the limit 

with f given by the solution of 

W2 1co 
f(x) = X2 -cof(y)g(E + y + W2/x)dy 

1-: f(x)dx = 1. 

(43) 

(44) 

(45) 

It is also easy to verify by the change of variable x -7 

W2X-1 and y -7 W2y-1 in (41) that 

(46) 

Using these results, it is immediate that all except 
the end terms s "" - Nor s "" N in (39) are approximate-
ly equal to 1: ¢(us)f(us)dus • In the limit of an infinitely 
long chain N -700, the density of states per site is there­
fore also given by this expression 

p(E)per site = 1-: dxf(x)f(W2/x )(W2/x ) 

= 1: dxf(W2/x)f(x). 

This is preCisely the result obtained in Ref. 15 by the 
use of a Green's function approach. 

(47) 
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As our second example, we will now work out the 
problem of a particle on a line with a potential 

V(x) = c L; il(x - xi)' (48) 
i 

where the {x J are points chosen independently and at 
random with an average density p. This is the Frisch 
and lloyd problem.2 The £i'S of Eq.(21) have here a 
probability distribution 

with probability TJP 

(49) 

with probability 1 - TJP 

whi1~ W = 1]-2. This problem can be handled by com­
bining our former example with a suitable limiting pro­
cedure to let TJ ~ O. We assume an infinite system, so 
that (41) applies, and we introduce the function 

p(x) = TJPil(x - c/TJ) + (1 -PTJ)G(x) 

and write (41) as 

~x) = Jqis)pfE + x + _l __ ~)dY. 
~ TJ4y TJ2 

It is convenient to define next 

(50) 

(51) 

XIj(X) = (l/TJ)<fi...x/TJ + 1/TJ2). (52) 

Expression (51) as an integral equation for X" and 
using (50), one obtains immediately 

X,,(x) = (1 + TJx l )2PTJX,,(x l ) + (1 - TJp)(l + TJxO)2X,,(xO) 

with 
(53) 

= x + TJE 
Xo - 1 - TJ(x + TJE) (54) 

and 
= x - C + TJE 

Xl - 1 - TJ(X - C + TJE) • (55) 

In the limit TJ ~ 0 Eq. 53 reduces to a trivial identity. 
However, the first derivative with respect to TJ followed 
by TJ ~ 0 leads to an equation for X{x) == lim" .... oX,,(x): 

a! (E2 + X2)X(X) =p[x(x) - x(x - c)]. (56) 

This is the same equation derived Frisch and lloyd 
in their approach based on stochastic processes.20 

Once (56) has been solved with the appropriate normali­
zation condition 

(57) 

the density of states can be obtained by a similar limit­
ing procedure in (47). We notice first that 

P(E)unit length = (l/TJ)p(E)per site· 

We also write (47) as 

p(E)per si te = J.: ~x)~W2/x)dx, 

(58) 

(59) 

which is correct because of (46). Next,using the defini­
tion of XIj' Eq. (52), we have 

p(E)unit length 

= ~ J.: ~X)CP(~)dx = J.: X,,(u) ~ CP(~2{1 ~ TJU»)du 
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(60) 

which in the limit TJ ~ 0 goes over into 

p(E)unit length = J.: X (u)X (-u)du. (61) 

Frisch and lloyd derived instead 

N(E) unit length = L: p(E') unit length dE' = lim p-lUX(U), 
...... 00 (62) 

but the two expressions are equivalent. The fact that 
N(E) can be written as a functional linear in x' Eq. (62), 
while p(E) is given by a quadratic functional of the same 
x, Eq. (61), is already discussed in Halperin's work.3 
A direct proof of the equivalence has also been given 
recently.2l 

IV. THE QUESTION OF WAVEFUNCTION 
LOCALIZATION 
Suppose we have agreed on some definition of what is 
meant by a "localized" wavefunction, and let Ley be 
the set of all those I/I's which satisfy this definition. It 
is clear that if in Eq. (11) we restrict the domain of 
integration to L instead of all 1/1 space, we obtain a par­
tial density of states p loe (E), associated with those wave­
functions that belong to L. Introducing the characteris­
tic function of L 

Xloel/l- , ( ) 
_ { 1 if 1/1 is localized 

o otherwise 
(63) 

we can write 

(64) 

which has the same structure as (11), the only difference 
being that the factor Xloe(l/I) "erases" all extended s 
states. The Mott- CFO conjecture would be verified if 
we could prove that in the limit of an infinite system 
Plo (E)/p(E) ~ 1 in certain parts of the energy spec­
tr~, and Ploe (E)/p(E) ~ 0 in other parts. We see ~hat 
the information enabling one to decide on the question of 
localization is, at least in principle, contained in our 
formalism. 

To make the above rigorous, we have to define Xloe(l/I) 
precisely. For an infinite system matters are very 
simple: we call a state "localized" if it can be norma­
lized to unity, and extended or delocalized otherwise; 
this seems to be the only reasonable definition. But it is 
of no particular interest; infinite systems do not exist 
in nature. On the other hand, and from a physical point 
of view, it is clear that in a finite but macroscopic s~­
pIe of material there are states we want to call localIzed 
(like,for example, donor or acceptor states in a slightly 
doped semiconductor) and states we want to call extend­
ed (for example, band states in a very pure crystalline 
sample). We will try to define X loe on the basis of these 
physical ideas. To avoid unnecessary complications, 
we will only talk about the tight-binding band problem; 
the case of the continuum can then be obtained by in­
serting the "mesh spacing" 1] of Sec. n in the appropri­
ate places and taking the limit TJ ~ O. 

Let a(N) be any function with the properties 

lim a(N) = 0 
N .... oo 

and for every £ > 0, 

lim a(N)NE = co. 
N .... oo 

(65) 

(66) 
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The typical example would be a(N) = (logNtl. 

We propose the definition 

Xloc(1/I) = exp(- a(N) ~ lail), (67) 

where ai is the amplitude of 1/1 (which we assume nor­
malized to unity) at site i. It is clear that this definition 
has all the desired properties. For a macroscopic 
system X loc (1/1) "" 0 if 1/1 is a Bloch state, a modulated 
Bloch state,or even a quasi-one-dimensional percola­
tion channel,and Xloc (1/I) "" 1 if 1/1 is of the type usually 
considered as localized, with most of the amplitude con­
centrated in a small region of space. The above approx­
imate equalities become increasingly accurate if the 
size of the sample is increased. 

strictly speaking, our X loc (1/1) is not the characteristic 
function of any decent subset of Y, but of what is called 
a "fuzzy set."22 This is, however, irrelevant for our 
purposes; all that matters is that the right-hand side of 
(64) is a well-defined quantity for any N, and we simply 
take it as the definition of Ploc(E). 

An exact evaluation of (64) with the definition (67) does 
not seem an impossible task in one dimension, since the 
structures of (67) and (11) are very similar. But since 
no mobility edges are expected in one dimension anyway, 
we have made no serious effort to carry out this calcu-
1ation. 

We conclude this work with a few additional remarks. 
One may want to know what fraction of 1/1 space corres­
ponds to localized states. 

We can calculate this fraction x as 

Jy X loc (1/1 ):D[1/I ] 
x= 

Jy :D[1/I ] 

= _f-__ :=-_._._._1-....:::::.-da_l_·_·_·_da_N_e_-_a_(N_>_E_f_l_a-:-i:-I_6-::[::I_-_L;_f_a_~_J 
1-: ... 1-: daNO [1 - L;: a;2J 

(68) 

which resembles an average of the quantity exp[-a(N) 
L;fla i IJ over a microcanonical ensemble (because of 
the 6 function in the integral). It is known from statis­
tical mechanics that for a fixed a (N -independent) lim 
/, N-oo 
"exp(- a L;f lail) can equally well be computed using 
the corresponding canonical ensemble with<~f a~> = 1. 
For our case, and because of the very weak dependence of 
a(N) on N the same proof still holds, and we have 

[(
N)1/2 roo -a(N)lal -Na2/2 IN 

X = 2lT J-oo e e da 

"" exp(-(2/lT)1/2a (N)N1
/
2). (69) 

Thus, a negligibly small fraction of 1/1 space corres­
ponds to localized states. But these states must receive 
an enormous weight in (11) because of the Jacobian. For 
a localized state, one can considerably change all Ei'S 
outside the region of localization without appreciable 
change in the wave function. H 1/1 has vanishing ampli­
tude at some site, it is not affected by the E at that site. 
Fromthis,weconcludethat IJI-l = la(a1, ••• ,aN,E)/ 
a(Ev E2'.'.' EmU) I must be extremely small for a 
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localized state. Thus, the Jacobian tends to favor local­
ization, while the available volume in 1/1 space favors 
delocalization of the states as said before. It would be 
instructive to see which of these tendencies dominates; 
and we can do so very easily in one dimension. 

Let us take any state defined by amplitudes {ail and 
suppose these numbers rearranged into a decreasing se­
quence. H the state is localized, it should survive multi­
plication by exp[- a(N) L;j la j I] ,and for this to happen 
the asymptotic behavior for large N must be 

la j I < 1/j, j large. (70) 

Thus 

IJ IlOC "" I 1 I > eNlDgN. a1a2···aN 
(71) 

For a typical extended state, on the other hand, 

IJ I "" (N/2) logN. 
ext e , (72) 

therefore, 

xlJI (N ) IIJ I :c
t 

"" exp "2 10gN - (2/lT)1/2a(N)Nl/2 N~oo 00 (73) 

indicating a dominance of the localizing tendency re­
presented by J. Of course, a rigorous theory should 
consider f[{Ei}] also,and refer to the three-dimensional 
case in order to be of interest. We have not succeeded 
so far in elaborating such a theory on the basis of the 
present formalism. 
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Osborn used the property of compactness to show that there is an infinite mean square deviation 
between the t matrix for a local potential and any separable t matrix of finite rank. I present an 
alternate proof, using only the property of square integrability. The divergence of the mean square 
deviation arises from very large momenta. I argue that a separable t matrix can give a good 
approximation to the trinucleon energy, which is insensitive to values of the t matrix at very large 
momenta. 

In a recent paper, Osborn1 shows that a separable ex­
pansion of finite rank2 does not converge to the t matrix 
for a local potential. In this note I summarize his argu­
ment, present a simplified proof of his conclusion, and 
then argue that the approximation of a separable t 
matrix is likely useful for certain calculations, such as 
the energy of the trinucleon. 

Osborn's argument uses the separation of operators 
into those which are compact and those which are non­
compact. 3 He also utilizes the lemma that a noncom­
pact operator is not square-integrable. He first states 
that a local operator is noncompact. The t matrix for 
a local potential obeys the Lippmann-Schwinger equa­
tion 

t(z) = v - vgo(z)t(z). (1) 

Osborn shows that the second term on the right is 
square-integrable (provided z is not at a pole) and there­
fore compact. The difference of the noncompact opera­
tor v, and the compact second operator gives a non­
compact t(z). But a separable t matrix, tN(Z) is square­
integrable and therefore compact. Then the difference 

At(z) == t(z) - tN(Z) (2) 

is a noncompact operator, and therefore not square­
integrable. That is, the mean-square deviation of tN(Z) 
from t(z) is infinite. 

Sloan and Gray4 have very recently examined Os­
born's argument, and shown that the noncompactness of 
a local potential arises from large values of momenta. 
Their conclusion agrees with that of this note: that a 
separable approximation can still be useful for calcula­
ting quantities which are insensitive to the value of the 
t matrix at high momenta. Sloan's argument uses the 
property of compactness; while in this paper we confine 
ourselves to the property of square-integrability. 

We simplify Osborn's proof, and obtain some insight 
as to the source of the failure of convergence, as fol­
lows. First, we show that a local potential v is not 
square-integrable. Since (from Osborn's paper) the 
term vgo(z)t(z) is square-integrable, the t matrix t(z) is 
not square integrable. But tN(z) is square-integrable; 
then At(z) defined by Eq. (2) is not square-integrable (in 
agreement with Osborn'S result) giving our Eq. (7), 
below. 

By definition, a local potential has a matrix element in 
(r, r') space 

(rlv Id = v(r)6(r - r'). (3) 

Here 6(r - r') is a three-dimensional Dirac delta func­
tion. For determination of square-integrability, we 
evaluate the trace as a six-dimensional integral 

Tr(vv t) = J (r I v I r')2d3rd3r' = IX) • (4) 
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The infinity results from the squared delta function in 
the integrand. 

It is of interest to evaluate Tr(vv t) for a local poten­
tial in the momentum representation, since we are con­
cerned with applications to the three-nucleon system, 
which are generally made using this representation. 
From (3), the potential has matrix elements in momen­
tum-space, 

(plv Ip/) =f(q). (5) 

Here q = p - p', andf(q) is the Fourier transform of 
v(r). Note that a local potential is independent of the 
vector Q = p + p'. We examine the integral, changing 
variables from (p, pI) to (q, Q): 

Tr(vv t ) = J (Plv Ip/)2d3pd3pl == J[f(q)]2d3q J d3Q = IX). 

(6) 

The infinity clearly arises from very large values of 
the magnitude Q; that is, from very large magnitudes of 
momenta p and p'. [This source could be antiCipated, 
since the integrand in (6) is bounded; so the divergence 
which must occur to give agreement with (4) must come 
from the infinite limits for integration in momentum 
space.] 

We now use the simple lemma that the sum (or differ­
ence) of an operator which is not square-integrable and 
an operator which is square-integrable gives us an 
operator which is not square-integrable. We apply this 
lemma twice: first where the operators are v and 
vgo(z)t(z), respectively; and then where the operators 
are t(z) and tN(z), respectively. We thus obtain one of 
Osborn's results, 

(7) 

The divergence shown in (7) is very disturbing at 
first, since it appears that a separable t matrix is a 
very poor approximation. This seems paradoxical, since 
results for the trinucleon energy using a separable 
approximation to the t-matrix agree quite well with 
those using a t matrix for a local potential. 5 How can 
we reconcile this contradiction: t N disagrees with t 
even for large N, as shown by (7); but it is useful to 
approximate t by tN, even for the extreme case N = 1 
(the unitary pole approximation t u ). 

It is crucial to remind ourselves that we are arguing 
the utility of a separable approximation t N for some 
specified purpose, such as calculation of the trinucleon 
energy ET • Equations (6) and (7) show us that the 
approximation of separability breaks down at very 
large magnitudes of momenta,p andp'. But the tri­
nucleon energy ET is insensitive6 to the values of the 
t matrix at very large values of p,P', or z, so the failure 
of t N to be a good approximation for these conditions is 
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irrelevant to the utility of the approximation t N for this 
specified purpose. 

We can understand Lavine's result6 using Fuda's t­
matrix perturbation theory,7 for the first-order correc­
tion to the triton energy: 

3 

~E(l)=L:;[<<pI-<<Petl]~tet(.l!1»[I<p)-I<pet)]' (8) 
et~l 

Here I <p) is the triton state vector found solving the 
Faddeev equations using approximation t N for the two­
body t matrix. Q! is the "channel" for interaction be­
tween nucleons {3 and y (different from each other, and 
different from Q!). The error ~tet (Ei» uses (2) for channel 
Q!, at the energy Eo found using tN. I <p) is the component 
of the triton state vector in the Q! channel. When we 
evaluate (8) in the momentum representation, the factor 
[I <p) - I <Pet)] and its transpose each die off rapidly at 
high momenta (for usual choices of tN). This conver­
gence factor aVOids the infinite result of (7), and in fact 
gives a rather small numerical result, of order lr5 MeV 
for central forces with soft cores. 5 

One could also argue that the divergence (7) is unlike­
ly to occur if we replace t(z) for a local potential by the 
(unknown) tR(z) for the real nucleon-nucleon t matrix 
that occurs in nature. Even a small nonlocality in the 
potential would smear out the delta function (3), and 
give some dependence on Q in (6). 

But even if the real potential were exactly local, and 
the divergence (7) held, the approximation tN(z) is use­
ful for calculation of ET for central forces. The diver­
gence (7) is useful as a "danger signal" to remind us 
that t N is only an approximation, and that we must ex­
pect that there are limits to its utility. If we are calcu­
lating a quantity which is sensitive to (p I t(z) I pI) at very 
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large magnitudes p and P', we should anticipate that the 
separable approximation t N would be inaccurate. Since 
these matrix elements enter in calculation of electron­
trinucleon elastic scattering for very large momentum 
transfers, we would expect failure -of the separable 
approximation here. (It is likely that three other effects 
are also of Significance in this problem: relativistic 
effects; effects of poorly-known three-body forces; and 
nonadditive effects in electron scattering.) 

Returning for a moment to the problem of Ez., the 
main difficulty with use of the unitary pole separable 
approximation is the not very good agreement between 
tu and t founds for noncentral forces. 
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Using the previous analysis of Gel'fand and Graev a new relativistically invariant expansion of a 
scalar function on three-dimensional imaginary Lobachevski space L iI) is given. The coordinate 
system used corresponds to the horospherical reduction SO(3. 1) :::l E2 :::l SO(2) and covers all of 
LiJ)· 

INTRODUCTION AND SUMMARY 

Explicit relativistically invariant expansions of func­
tions defined on the three transitivity surfaces of the 
proper Lorentz group in Minkowksi space have been 
studied to varying degrees in recent years. 1- 3 Of these 
surfaces explicit expansions on the upper sheet H2 of 
the double sheeted hyperboloid4 [x,x] = 1 and on the 
cone5 [~,~] = 0 have been well developed. S (Note: x is 
a 4-vector in Minkowski space with [x, x] = x8 - x2 the 
usual scalar productJ The explicit expansions on H2 
and on the cone are based on the expansion formulas 
due to Gel 'fand et al. 7 The invariant expansion of a 
scalar function j(x) (x E H 2 ) is obtained by observing 
that H 2 corresponds to a realization of three-dimen­
sional real Lobachevski space L 3(R). An invertable 
horospherical integral transform then associates a 
function h(~) on the cone with each j(x). The invariant 
expansion of j(x) then reduces to the invariant expan­
sion of h(~). The latter expansion is achieved by the 
decomposition of h (~) into homogeneous components. 

An analogous geometry and Irreducible decomposition 
of a function j(x) on the single sheeted hyperboloid H l' 
with equation [x,x] = - 1, has also been given in Ref. 7. 
The geometry of H 1 corresponds to a realization of 
imaginary Lobachevski space L 3 (1) and identifies dia­
metrically opposed points [so that j(x) = j(-x)]. The 
irreducible decomposition on H 1 differs from that on 
H 2 in that it contains a discrete spectrum as well as the 
usual continuous spectrum. 

Previously there has been (to the author's lmowledge) 
one paper by Kuznetzov and Smorodinski8 which has 
considered an explicit complete set of functions on H 1 
realized as L 3 (1). This analysis uses the results of 
Ref. 7 only insofar as they consider a parametrization 
of x E H 1 for which the diScrete spectrum term is not 
necessary. [More specifically, they choose a coordinate 
system which only parametrizes points at a real dis­
tance from x = (0,0,0,1).] Verdiev,9 on the other hand, 
has given his attention to finding an explicit set of com­
plete functions with spin on H l' There are some short­
comings in Verdiev's work in that the continuous spec­
trum expansion functions have not been normalized and 
the method used to obtain the normalized discrete spec­
trum expansion functions needs some explanation. 
Zmuidzinas2 has given a complete account of the expan­
sion of a scalar function defined on H 1 using the eigen­
function expansion methods of Titchmarsh.1o This 
analysis has been done in the canonical group reduc­
tion 50(3, 1) :::l 50(3) :::l 50(2) or 5 system. Limic et al. 3 

have treated the general problem of the expansion of 
square integrable functions defined on the transitivity 
surfaces of 50(p, q) in the canonical group reduction 
and hence include the results of Zmuidzinas as a special 
case. 

In this paper we examine the expansion of a square 
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integrable function defined on L 3 (1) in the noncanonical 
group reduction 50(3, 1) :::l E(2) :::l 50(2) or horospherical 
system. This expansion is new and serves to illustrate 
how the analysis of Gel 'fand and Graev should be treated 
to yield the correct expansion formulas. There is only 
one other group reduction which parametrizes all of 
L 3 (1) (apart from the group reduction 50(3,1) :::l E(2) :::l 

T 1 ® T?, which differs little from the horospherical 
system). This is the 5 system. We do not however give 
this expansion here as it differs little from the results 
of Zmuidzinas and Limic et al. 

The study of the horospherical system group reduc­
tion of 50(3, 1) has received attention previously in 
application to particle physicsll,12 and is also of intrin­
sic group theoretical interest. 

The content of this paper is arranged as follows. In 
Sec. 1 we collect the pertinent facts concerning the 
Gel'fand-Graev analysis on L 3 (1). In Sec. 2 we give 
the horospherical system expansion. 

1. THE HARMONIC ANALYSIS OF A SCALAR 
FUNCTION ON L3 (/) 

The central problem here is the decomposition of the 
representation 

(1. 1) 

into components which transform according to unitary 
irreducible representations (UIRs) of the proper Lorentz 
group 50(3,1). The Gel'fand-Graev transform on L 3 (1) 
invertably maps j(x) into a pair of functions h(O and 
cf>(~,b). The function h(~) gives the representation 

(1. 2) 

and the functions cf>(~, b) define the representation 

[Rgcf>] (1) = {3-1(l,g)cf> (lg), (1. 3) 

where cf>(1) = cf>(~,b) and (3(l,g) is the zeroth coordinate 
of ~g. This pair of functions are obtained by integration 
of j(x) over the two distinct manifolds of horospheres 
on L 3 (1). [We assume that the reader is familiar with 
the rudiments of the geometry of L 3 (1) as found for 
instance in Ref. 7.] Accordingly, we have 

(i) Horospheres of the first kind. 

h(~) = f j(x)1i(I[x, ~]I -l)dx 

with dx the invariant measure on L 3 (1) 

dx = dx 1dx 2 dx 3 

IXol 
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Here a typical horosphere of the first kind has the 
equation 

(1. 6) 

(ii) Horospheres of the second kind. 

In this case cp(~, b) is obtained by integration of f(x) 
over the isotropic line x == b + n according to 

cp(~,b) == Joo f(b + n)dt, 
-00 

(1. 7) 

where 

[b,b]==-l, [b,~] == [~,~] == 0, bo == O. 

The choice of integration over an isotropic line is 
more convenient than over the horosphere itself. We 
note that each horosphere of the second kind given by 
[x, ~] == 0 consists of all mutually parallel isotropic 
lines passing through the point ~ on the cone. 

f(x) is given in terms of h(~) and cp(~,b) by the for­
mula 

f(x) ==_1_ J h(OO(2)(I[x,W -1)d~ 
(4lT )2 

+ _1_ .r' cot2ede 1 cp(~,e)dw, (1.8) 
(2lT)2 0 r 

where 

d~ld~2d~3 
d~ == I ~ I ' 

o 
with cp(~, e) the value of cp(~, b) for the isotropic line 
y = b + t~ lying in the [x,y] == cose plane (i.e., [x,b] = 
cose). r is a contour on the cone intersecting each gene­
rator once and the measure dw is defined by 

dw == I ~o l-lald~2d~3 - ~2d~ld~3 + ~3d~ld~2)' (1. 9) 

In order to achieve the decomposition of f(x) into 
irreducible parts it is necessary to expand the "Fourier 
components" h(~) and cp(~, e) into homogeneous com­
ponents. For h(~) this is done exactly as for the case 
of L 3 (R), Le., 

1 6+ioo 
h(~) == -2 . J F(~; u)du, 

lTt 6-ioo 
(1. 10) 

(1. 11) 

The expansion of cp (~, e) into irreducible (homogene­
ous) components is achieved by Fourier analyzing 
cp(~, e) with respect to the angle e(o :s e < IT) which 
specifies each isotropic line in a given horosphere of 
the second kind. The appropriate decomposition is 

cp(~, e) ==! I; F(~;x; 2n)e-2ine • 
IT n =-00 

(1. 12) 

The "Fourier coefficients" satisfy the homogeneity 
condition 

F(~; b; 2n) = F(~; x; 2n)e-2 ine. (1. 13) 

The invariant decomposition of f(x) is then 

f(x) == _t_' - /+ioo u(u + 1) J F(~; u) I [x,~] 1-0-2d~dO' 
4(2lT)3 6-ioo r 

(1. 14) 
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(1. 15) 

(1. 16) 

Group theoretically the "Fourier coefficients" in 
(1. 14) transform according to the irreducible repre­
sentations (ffis) of 50(3, 1) as follows: 

(i) F(~; u) transform according to the ffis 

c == u + 1 = 0 + 1 + ip, (-<Xl < p < ee), ko = 0, 
(1. 17) 

where [c, ko] labels each ffi of 50(3,1). (!his is the 
notation due to Naimark13 that we are usmg here.) We 
obtain the unitary case (Le., the principal series) when 
0=-1. 

(ii) F(~; b; 2n) transform according to the U1Rs 50(3,1) 

c = 0, ko = 2n, n = 1,2,3, .... 

2. THE HOROSPHERICAL OR Ho SYSTEM 
EXPANSION ON L3 (I) 

(1. 18) 

The Ho system 4-vector x on the single sheet hyper­
boloid HI is given by 

x = (H-e-a + (1 + r 2 )ea ],re a coscp,rea sincp, 

(2.1) 

- <Xl < a < <Xl, 0 :s r < <Xl, 0 :s cp < 2lT. 

This parametrization covers the x 0 - X 3 ~ 0 half of the 
[x,x] = - 1 hyperboloid and so covers all of L 3 (I). 

For the Ho system expansion the contour r is taken 
to be 

~O-~3==2 

and ~ is parametrized according to 

~ = (1 + u 2 + v 2, 2u, 2v, - 1 + u2 + v2), 

- <Xl < u,v < <Xl. 

(2.2) 

(2.3) 

F(~; u) is expanded in a double Fourier series accord­
ing to 

(2.4) 

and the measure on the cone is 

d~ = 4 du dv. (2.5) 

Taking x = (sha, 0, 0, - cha) the continuous spectrum 
part of expansion (1. 14) then reduces to the calculation 
of the integral 

10 (a) == 100 
du 100 

dvlea (u 2 + v 2) - e-al-0-2eiAUeijl~. 
Ajl -00 -00 

(2.6) 

This integral can be calculated by using the identity 

Itl S = tf + t~, (2.7) 

as well as the known Fourier transforms in two dimen­
sions of the functions (b 2 - u 2 - v 2):0-2 which are 
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given by 

[
(b 2 - u2 _ V2):O-2] 

F.T. 
r(- a - 1) 

= _ i (2b )-0-1 [Ko-1 (b (Q - iO» _ K o- 1 (b (Q + iO»] 
(Q - iO)-(0+1) (Q + iO)-(o+l) , 

(2.8) 

F.T. + = - i(2b)-O-1 
[

(b 2 - u2 - V2)-O-2] 

r(- a - 1) 

X 
[ 

. ( 1)Ko- 1 (b(Q - iO» . )KO - 1 (b(Q + iO»] e'" 0+ _e-n,(0+1 -:---.::~ __ _ 
(Q - iO)-(0+1) (Q + iO)-(0+1) , 

(2.9) 
where Q = - ~2 -11-2 • 

These formulas are special cases of the general for­
mulas for the Fourier transforms in n dimensions of 
the generalized functions (b 2 + P)A (~ ;r integer) as 
given by Gel 'fand and Shilov .14 (N~te: P is a general 
quadratic form in the n Cartesian coordinate variables 
expressed in canonical or diagonal form.) 1~1l (a) is then 
found to be 

1~1l (a) = i1T(i )0+1 r(- a - l)e-a[J 0+1 (e-aX) + J- 0- 1 (e-a)], 

(2. 10) 

where X = (.\.2 + 11- 2 )1/2. 

For the discrete part of expansion (1.14), F(~i 2n) is 
expanded according to 

_ 00 00 

F(~i 2n) = 6 1 xdxa",(Xi 2n) J 2n -m (xP)eiml/!, 
m=-oo 0 

(2. 11) 

where u = P coslJi, v = P sinlJi 

The evaluation of the discrete part of (1. 14) then 
requires the calculation of 

(2.12) 

This integral is readily calculated, using the identity 

1 
1i(a2 -x2) = 2a [1i(a + x) + 1i(a -x)], 

to be 

Ix(2n) = 41Te-aJ2n(Xe-a)Jm(Xr)eim<P. 

The Ho system expansion on L 3(1) is then 

x a(a + l)am( X, a)r(-a - 1) 

X [Jo+1(e-aX) + J_ 0_1(e-aX}]da 

(2.13) 

(2.14) 

+- 6 nam(X,2n)J2n(xe-a) Jm(Xr)e<m<P. (2.15) 4 00 ). 

1T ,,= 1 

For the continuous part of (1. 14) we have changed 
the expansion of F(~i a) to polar coordinates and used 
the identity 

00 

eixr cos (<I>-e) = 6 imJm( xr)eim (<p-e) , (2.16) 
m=-OO 
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where tane = ~/11-. 
am ( Xi a) is then given by 

12" 
a", (X; a) = i m 0 aAIl(a)e-imfJde. 

The inversion formulas of (2.15) are 

a",(Xi a) = ~1T r(a + 1) J j(x)e-a[JO+1 (e-a X} 

+ J_0_1(e-aX)]Jm(Xr)e-im<l>dx, 

where 

dx = e2adardrdcf>. 

1318 

(2.17) 

(2. 18) 

(2. 19) 

(2.20) 

For the principal series a = - 1 + ip the continuous 
part of (3.15) is an expansion in terms of the functions 

which satisfy the orthogonality relations 

J iflff:m(a,r, cf>}iflf{m (a,r, cf>}dx 

where we have put 

= 2 sh 1Tp 6(p - p)6(X - X)6 miii , 
xp 

(2.21) 

(2.22) 

(2.23) 

We observe that the a dependant part of (2.22) re­
produces the completeness relation for the Titchmarsh 
integral transform,15 i.e., 

100 - - 2 sh 1Tp -J iP (x)J;-p (x)x-1dx = 1i (p - p). 
o p 

(2.24) 

We also note that for the discrete spectrum expan­
sion functions we have the orthogonality relation 

(2.25) 

This is just a special case of the formula 

(2.26) 

CONCLUDING REMARKS 

We have given here an expansion of a function 
j(x) E L 3(1) in a coordinate system which is an alter­
native to the canonical or S system, viz., the Ho system. 
The parametrization of x we us.ed is obtained from the 
corresponding coordinate system vector on H2 via the 
analytic continuation a ~ a + i1T /2. This example illus­
trates not only the application of the analysis of Gel'fand 
and Graev in obtaining explicit expansion formulas but 
also that the group reduction parametrizations of x E H 2 

when continued in the manner above do not always cover 
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all of H l' The 5 system is the only one that covers all 
of H l' It should be _mentioned here that the expansion 
functions used for F(~. 2n) in (2.11) are the natural ones 
in the sense that they are the basis functions for the 
UIR {o, 2n} of SO(3, 1) when realized in a Ho system 
basis in the space of square-integrable functions in the 
plane. 

In the future we intend to study all possible coordi­
nate systems on H 1 which cover at least all of L 3(I) 
and for which the angular part of the Laplacian A L 

admits a separation of variables. 
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"Two variable expansions based on the Lorentz and conformal 
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Exact motion in noncentral electric fields 
Andre Hautot* 

University of Liege, Institute Physics, Sort Tilman par 4000 Li~ge /, Belgium 

We study the problem of the motion of a charged particle in noncentral potentials of the type 
f«(J)/r2 + V(r). Newton's and Schrodinger's mechanics are considered. Exact solutions exist if 
V(r) = - H/r or Kr2 (i.e., Coulomb or harmonic oscillator potentials) whilef«(J) may have at 
least three different expressions as a function of (J if the problem is three-dimensional and seven 
expressions if it is two-dimensional. The classical trajectories are computed and the energy levels in 
the corresponding quantum problem are given. Analogies between the two treatments are discussed. 

For a presumed complete bibliography about the prob­
lem of finding exact solutions to the equations of motion 
in the presence of unusual types of potentials see Refs. 
1-10. Central magnetic fields were treated in a previous 
paper.10 We now turn to noncentral electric potentials 
of the type 

J::::: (J.I/e) [j(6)/r2 + V(r)], 

where J.I is the mass and e the charge of the particle, 
(r, 6, cp) its spherical coordinates. V represents its 
velocity,y its acceleration. i equals -J- 1. We shall 
perform the calculations both for Newton's and for 
Schrodinger's mechanics. 

I. NEWTON'S MECHANICS 

Newton's equation can be written in the form 

y::::: - grad [j(6)/r 2 + V(r)] 

or in more detail 

y ::::: - (l/r) V'(r)r + 2/(6) r/r4 - (l/r4)/'(6) 

(1) 

x [xz(x2 + y2tl/2,yz(x2 + y2t1/2,_(X2 + y2)1/2]. 
(2) 

A. The radial integration 

The conservation of energy implies 

v2 + 2/(6)/r2 + 2 V(r) = a (= const). (3) 

By scalar multiplication of (2) by r we obtain: 

roy = - rV'(r) + 2/(e)/r2. 

From this equation we deduce 

d(rov)/dt = roy + v2 = a - rV'(r) - 2v(r). 

Remembering that 2r o v = dr2 /dt, we have after a classi­
cal integration 

rov = (ar2 - 2r2V(r) _ b)1/2. (4) 

Finally, 

J dt = J r(ar2 - 2r2 V - btl/2 dr = F(r). (5) 

It is very remarkable that the radial motion is indepen­
dent of the non central term in the potential (1). Equation 
(5) is exactly integrable by means of circular functions 
in the two classical cases: 

V= V1 =-H/r 

V= V2 = Kr2 

(Coulomb potential), 

(harmonic oscillator). 

1320 J. Math. Phys., Vol. 14, No. 10, October 1973 

In what follows we shall always restrict ourselves to 
these two possibilities and concentrate on the noncentral 
term in (1). It must be pOinted out that a> 0 if V = Kr2 , 

but that a < 0 if V = - H/r (for bound states). 

B. Angular integrations 

Let us define P = r x v; its modulus squared p2 can be 
written as 

p2 ::::: r2v2 _ (rov)2. 

USing (3) and (4) one finds 

p2 = b - 2/(e). 

Although the modulus of the angular momentum is not a 
constant of the motion, the expression p2 + 2/(e) is con­
served. On the other hand, in spherical coordinates, p2 
equals r4(8 2 + sin2e<p2) where the point denotes time 
differentiation, and 

r4(8 2 + sin2e<p2) = b - 2/(e). (6) 

By vector multiplication of (2) by r one finds 

dP/dt = - [f'(e)/r 2)[- y (x2 + y2)-1/2,x(x2 + y2)-1/2, 0]. 

One concludes that dPz/dt = 0, and after integration 

P z = r2 sin2 ecp = d (d = const). (7) 

Equations (6) and (7) allow us to find the two last inte­
grations needed for the complete solution of this prob­
lem: 

1= J sine de 
-J[b - 2/ (e)] sin2e - d2 

::::: J.!(ar2 -2r2V-bt1 / 2dr, (8) 
r 

J = d J de = f dcp. 
sine -J[b - 2/(e)] sin2 6 - d2 

(9) 

The problem is now solved. An exact solution exists 
provided the integrals present in (8) and (9) are elemen­
tary. The expression "exact solution" has been defined 
in our previous paper10 as solutions expressible in 
terms of circular or at most elliptic functions. 

Remark 1: Equation (7) indicates that Pz is a con­
stant of the motion. If we can choose the Oxz plane so 
that it contains the initial vectors r(t = 0) and v(t= 0) P 
is directed along the y axis, so that P z = d = O. The 
trajectory is entirely contained in the Oxz plane: r and 
6 are the polar coordinates in the Oxz plane. Equation 
(9) vanishes and (8) determines the polar equation of 
the trajectory. 

Copyright © 1973 by the American Institute of Physics 1320 
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Remark 2: In connection with Remark 1 it must be 
pointed out that classical mechanics makes no distinc­
tion between the motion in the three-dimensional poten­
tial (1) (where r 2 ::::: x 2 + y2 + z2) and the motion in the 
two-dimensional potential (1) (where r 2 ::::: x 2 + y2) pro­
vided d = 0 in the first case and v z ::::: 0 in the second 
case. In both cases the trajectory is located in a plane. 
It can happen (see examples below) that quadratures (S) 
and (9) may be exactly performed when d::::: 0 but not 
d "" 0: then the exact solution for the three-dimensional 
problem only exists with suitable initial conditions (see 
Remark 1) without equivalent in the quantum formalism. 
With respect to the Schrodinger equation, an exact solu­
tion is to be expected only for the two-dimensional 
problem (i.e., in cylindrical coordinates). 

1. Elementary integrations 

In Remark 2 it was shown that if a Newtonian problem 
involving a potential of the type (1) is soluble in two 
dimensions it is also soluble in three dimensions pro­
vided suitable initial conditions are imposed. In fact, 
it suffices to choose adequately the orientation of the 
axis of reference. In view of future convenience in the 
comparison between the classical and quantum treat­
ments of a same problem we must however distinguish 
potentials which lead to elementary quadratures for 
arbitrary d from those which need d = O. It is not diffi­
cult to see that the following functions f(e) satisfy the 
required condition. 

Elementary integrations for arbitrary d-values: 

(10) 

(b) f(e) = (f'[2/2p.2)(a cos4 e + {3 cos2e + y)sin-2ecos-2e, 

(11) 

(c) f(e):= (f'[2/2p.2)(a cot2e + {3 cote + y). (12) 

Elementary integrations when d = 0 only: 

(d) f(e) ::::: (f'[2/2p.2)(a sin2e + {3 sine + y) cos-2e, (13) 

(e) f(e) = (1i2/2p.2}(a tan2e/2 + {3 tane/2 + y), (14) 

(f) f(e) = (f'[2/2p.2)(a cot2e/2 + {3 cote/2 + y), (15) 

(g) f(e) = (f'[2/2p.2)(a tan2e + {3 tane + y). (16) 
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integrate the case d = 0 for the sake of brevity. With 
the new variable u = cose Eq. (S) becomes 

- J[- (b + a1i2/p.2)u2 - ({31i2/p.2)u + (b _1i2y/p.2)]-1/2 

x du = f (ar2 - 2r2 V - b )-1/2 (l/r) dr. 

We shall see in the final discussion that these quadra­
tures lead to circular functions only if a, fJ, and y obey 
the conditions 

a + fJ + Y ;;. 0, 
(IS) 

a - fJ + Y ;;. O. 

If not, the solutions are logarithmic so that the motion 
is not stable. We shall therefore impose (IS). Finally, 
for V = VI = - H/r one obtains the polar equation of 
the trajectory: 

(b + a1i2/p.2tl/2 arcsin 
2(b + a1i2/p.2) cose + {3!i2 /p.2 x ----~------~~------~~-------

[fJ2f'[4/p.4 + 4(b + a1i2/p.2)(b - y1i2/p.2)]1/2 

::::: b-l/2 arcsin b - Hr + ct. 
r(H2 + ah)1/2 

The trajectory is a rosette contained between two 
circles so that 

(19) 

It is not difficult to see that the trajectory is closed if 

b-1/ 2(b + a1i2/p.2)1/2 ::::: min, a rational number. 

When V = l'2 = Kr2 , the trajectory is found to be 

(b + a!i2/p.2tl/2 arcsin 
x 2(b + a1i2/p.2) cose + fJ1f2/p.2 

[/321i4/p.4 + 4(b + aJi2/p.2)(b - y1l2/p.2»)1/2 

::::: (1/2) b-1/2 arcsin 2b - ar2 + Ct 
r2(a2 - SbK)1/2 

which again presents the aspect of a rosette so that 

(2b)1/2 (a + ,Ja2 - SbKtl/2 < r < (2b)1/2 

The parameters a, /3, and y have arbitrary constant x (a - ,Ja2 - SbK)-1/2. 
values (apart from conditions specified below). The 
factor 1i2/2p.2 is introduced in view of future convenience. It is closed if the above condition is fulfilled. 
We shall solve in detail the problem involving the first 
of these potentials. For the others we shall restrict (b) We now study the motion in the electrical potential 
ourselves to the equation of the trajectory. We shall 
also investigate the condition under which the motion is J = (p./€)[(1i2/2p.2) 
stable, i.e., 

o < r min < r < r max' 

(a) Except for the trivial case a ::::: fJ = y = 0, only one 
special case of (10) seems to have been investigated in 
the literature:1 {3 = 0, a ::::: - y so that the total poten­
tial (1) remains central. The study of the motion in the 
electrical potential 

J::::: (p./€) [(1i2/2p.2) 

x(a cos2e + {3 cose + y)/(r2 sin2e) + V(r)], (17) 

where V(r) ::::: - H /r or Kr2. seems to be new. We only 
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(a cos4 e + {3 cos2e + y)/(r 2 sin2e cos2 e) + V(r)]. (20) 

Equation (S) can immediately be integrated provided 
cos2 e is taken as new variable. The equation of the tra­
jectory is (take V::::: VI for example) 

(1/2)(b + a1i2/p.2tl/2 arcsin 

x 2(b + a1i2/1'2) cos2e - (b - {31f2/p.2) 

[(b - {3Ii2/p.2)2 - 4(b + a1i2/p.2)1i2y/p.2]1/2 

::::: b-1/2 arCSin b - Hr + ct. 
r(H2 + ab)1/2 
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The following conditions are needed for a stable motion: 

a + {3 + y ~ 0, 

y ~ O. (21) 

(c) We study the motion in the electric potential 

J == (IJ./E) [(1i 2/21J.2)(a cot2e + {3 cote + y} + V(r}). (22) 

Equation (8) can be integrated provided the new (com­
plex!) variable e2iEl is taken. The equation of the trajec­
tory is (V= Vl): 

(i/2}[1i2(y - a + i{3}/1J.2 - b)-l/2 arcsin 

x [1i2({3 + 2ia}/1J.2) cote + [1i2(2y + i{3}/1J.2) - 2b 

(cote - i)[(1i4j32/1J.4) + 4(1i2a/1J.2)(b - 1i2y /fj2})112 

+ c.c. = b-l / 2 arcsin b - Hr + const. (23) 
r(H2 + ab}1/2 

No restrictions on a, {3, and y have to be imposed. 

In the cases (a), (b), and (c) both integrals (8) and (9) 
lead to elementary functions for arbitrary d-values. It 
is only for the sake of brevity that we put d = 0 in the 
equation of the trajectory. In the following problems 
(d), (e), (f), and (g) the condition d = 0 is needed. 

(d) We study the motion in the electric potential 

J = (/-I/E)[(1i2/2/-12)(a sin2e + (3 sine + y)/(r2 cos2e) + v(r)]. 

(24) 
Here it is necessary to choose the orientation of the axis 
of reference so that d = 0 in (8) (see Remarks 1 and 2) 
if we want elementary quadratures. The equation of the 
trajectory is obtained by simply replacing e by 11/2 - e 
in (19). Indeed potential (13) deduces from (10) in that 
way. However, (8) indicates that the sign of the first 
member of the equation of the trajectory must be in­
verted. The condition of stability is again (18). 

(e) We study the motion in the electric potential 

J = (/-I/E)[(1i2/2/-12)(a tan2(e/2) + (3 tan(e/2) + y) + v(r}). 
(25) 

I(e} = (a cos2e + {3 cose + y} cos-2e (put u = cose), 

I(e) = (a sin2e + (3 sine + y) sin-2e (put z = sine), 

I(e} = (acose + (3 sine + y) cos-le l 
I(e) = (a cose + (3 sine + y) sin-le 

I(e} = (a cose + {3 sine + y sin2e + 0 sine cose + E} 

The list does not terminate here but we think it is of 
little interest to write it in extenso. 

3. Other possibilities of exact motion 

The conclusions of the preceding sections are valid with 
arbitrary initial conditions (see, however, Remarks 1 and 
2). In this section we deal with exact motions allowed by 
suitable initial conditions. It was recently shown by 
Armenti and Havasl2 that an exact motion is sometimes 
possible outside the plane of symmetry e = 11 /2 when a 
monopole-prolate quadrupole potential acts on the par­
ticle. However, very special initial conditions are 
needed to this end. The authors noted that the conclu­
sions are also valid when one considers noncentral 
potentials if in addition to an attractive radial force, 
there is a e-component of the noncentral force directed 
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Equation (8) can be integrated with the new variable 
tan(e/2). 
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The trajectory is described by an equation of a rather 
unusual type: 

i[1i2(y - a + i{3}/Jl2 - b)-l/2 arcsin 

x [1i2({3 + 2ia}/Jl2) tan(e/2} + [1i 2(2y + i(3)//-I2)- 2b 

[tan(e /2) - i)[(1i4{32 /Jl4) + 4(1i2a/p.2)(b _1i2y /p.2»1/2 

+ c.c. = - b-l / 2 arcsin b - Hr + ct. (26) 
r(H2 + ab)l/2 

Complex quantities are mixed to give a final real result; 
the problem (c) led to the same remark; there are no 
restrictions on the values of a, {3, and y. 

(f) We study the motion in the electric potential 

J = (j.t/E)[(1i2/2Jl2)(a cot2(e/2) + (3 cot(e/2) +y)+ V(r»). 

(27) 

Since it follows from (25) by the substitution e --7 11 - e 
Equation (8) indicates that the equation of the trajectory 
is obtained by carrying the same substitution in (26) 
after having inverted the Sign of the first member. No 
restrictions about a, {3, and y. 

(g) We study the motion in the electric potential 

J = (Jl/E)[(1i2/2Jl2)(ct tan2e + (3 tane + y) + V(r») (28) 

The equation of the trajectory obviously follows from 
(23) by the substitution e ~ 11/2 - e, after inverting the 
sign of the first member. No restrictions about a,{3, 
and y. 

2. Elliptic integrations 

Let us make the equation of the trajectory (8) rational 
by a suitable change of variables. If the irrationality is 
of the third or of the fourth degree the trajectory may 
be written with the aid of elliptic functions. The poten­
tials (1) for which I(e) has the following values lead to 
elliptic integrals: 

[puty = tan(e/2»). 

away from the plane of symmetry. It must be pointed 
out that since the existence of such a movement depends 
on the initial conditions no equivalent can exist in the 
quantum formalism. 

(a) We prove that the following exact motion is possible: 
S = 0, cP = w = const --7 cP = wt + CPo. The trajectory is 
thus a circle located in a plane at the distance d = r 
cose from the plane of symmetry. 

From the equations of motionll : 

V' (r) - 2/(e)/r3 = w2r sin2e, 

1'(e)/r3 = w2r sine cose. 

We deduce 

w2 == I' (e)/(r 4 sine cose), 
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and 

r 3 V'(r) ::;: 2f(e) + f'(e) tane. 

Such a motion is therefore possible provided f' cose > 0 
and r 3 V' - 2/ > O. The first equation determines the 
angular velocity while the second connects r and e, i.e., 
it gives the distance d = r cose between the plane of the 
trajectory and the plane of symmetry. As an example, 
let us investigate the case VCr) = Arn - 2• Simple alge­
braic calculations show that 

d = ([2f(e) + f'(e) tane]/A(n - 2)}1/n cose, 

w = ± U' (e)/sine cose]1/2 {A(n - 2)/[2f(e) + f' tane]} 2/n. 

(b) Another special motion is deduced from: e = 0, 
cP = O. The trajectory is located on a straight line pass­
ing through the origin. Of course such a motion also re­
quires special initial conditions. Furthermore, if we 
restrict ourselves to potentials of the type (1), we must 
ensure that r /\ y = 0 which leads to (- y ,x, O)f'= O. If 
f' = 0, f = const is fulfilled the problem may be solved 
exactly like a one-dimensional problem on account of 
the fact that the potential remains central. An exact 
straight line motion in a noncentral potential is also 
possible along the Oz axis because in this case x =y = O. 

II. SCHROOINGER'S MECHANICS 

We have already seen (see Remark 2) that the quantum 
problem involving potentials like (1) is soluble in three 
dimensions if fee) is given by (10), (11) or (12) and that 
it is soluble in two dimensions in all cases (10) to (16). 

A. The three-dimensional problem 

We use spherical coordinates r, e, cp. Schrodinger's 
equation takes the form: 

a2
1f; + (2/r) alf; + (1/r2) a2

1f; 
ar2 ar ae 2 

+ (cote /r 2) alf; _ (m2/r2 sin2e) If; + 2j.L 
ae n2 

x [E - j.Lf(f))/r2 - j.LV(r)]l/I = O. 

The variables can be separated in the usual way: 
If; = exp(imcp) 6 (f))R(r) (m is the usual magnetic quan­
tum number; we assume m > 0; calculations are analo­
gous when m < 0). One has 

r2R" + 2rR' + (2/J-/n2) r 2 (E - /J-V(r))R + sR = 0, (29) 

6" + coW 6' - (m 2/sin2f))6- (2j.L2/n2)f(e)6- sO = O. 
(30) 

As in the Newtonian formalism, the radial motion does 
not depend on the term f(e)/r2 present in the potential. 
We next investigate the two cases mentioned in Sec. I.A. 

Case 1: V= V1 = - H/r. 

Equation (29) reduces to the radial equation of a hydro-
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gen-like system. The energy levels are 

(31) 

where the parameter 5 may only take special values to 
be determined from (30). 

Case 2: V= V2 =Kr2. 

The radial equation (29) is the same as in the theory of 
the three-dimensional harmonic oscillator; the energy 
levels are given by 

E = n 12K [2n + 1 + (1/4 - 5)1/2], (32) 

where again s is quantized. Of course when fee) = 0, 
s = - l(l + 1) and we obtain the classical formulas for 
the energy levels of the hydrogen atom or of the harmo­
nic oscillator. 

It only remains to solve the f)-equation (which does not 
depend on the choice V = V1 or V = V2) to discover the 
allowed s-values. 

The e-equation is exactly soluble by means of known 
transcendental functions only when f(f)) is given by (10), 
(11) or (12). 

(a) The quantum motion in the electric potential (17). 

The e-equation (30) becomes 

6" + cote 6' - (m2/sin2e)6 

- (c:r cos2f) + (3 cose + y) sin-2f) 6 - sO = O. (33) 

We make the following substitutions: 

v = cos2(e/2), 6 = vP (1 - v)o T, 

where 

p = (1/2)(m 2 + c:r - {3 + y)1/2, 

a = (1/2)(m 2 + c:r + {3 + y )1/2, 

v(l - v)T" + [(2p + 1) - (2p + 2a + 2)v] T' 

- [2pa + s + a + {3/2 + 2p2 + p- c:r]T= O. 

We recognize the hypergeometric equation. The poly­
nomial condition gives the allowed s-values. One findS 
(k = 0,1,2, ... ) 

T = F(- k,k + (m 2 + c:r - {3 + y)1/2 + (m2 + c:r + {3 + y)1/2 

+ 1;1 + (11'12 + c:r - (3 + y)1/2;v), 

/1/4 - s = - c:r + (k + P + a + 1/2)2. 

This relation must be introduced into (31) and (32) to 
obtain the energy levels when V = V1 or V::;: V2' res­
pectively. In what follows we only consider V == V l' 
(The other case is analogous.) The energy levels are 
by (31) 

E == - (j.L3H2/2n2) {n + 1/2 + ../- c:r + [k + (1/2)(11'1 2 + c:r - {3 + y)1/2 + (1/2)(m 2 + c:r + {3 + y)1/2 + 1/2]2}-2, 
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when n,k = 0,1,2,···. 

(b) The quantum motion in the electric potential (20). 

The e-equation (30) becomes 

6" + cote 6' - (m 2/sin2e)6 - (a cos4e + (3 cos2e + 1') 

x sin-2e cos-2e 6 - s6 == O. (34) 

We make the following substitutions: 

W "" cos2 e, e = wP(I- w)o T, 

where 
p :::: 1/4 + (1/4)(1 + 41')1/2, 

a = (1/2)(m 2 + a + {3 + 1')1/2, 
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w(1 - w}T" + [(2p + 1/2) - (2p + 2a + 3/2}w] 

T' - (1/4)(s + Spa + m 2 + (3 + 21' + 2a + 4p) T = O. 

The solution is again the hypergeometric function 

T = F(- k,k + 1 + (1/2}(1 + 41')1/2 

+ (m 2 + a + {3 + 1')1/2; 1 + (1/2)(1 + 4y)1/2;w), 

1/4 - s :::: - a + [2k + 1 + (1/2)(1 + 4y)1/2 

+ (m 2 + a + {3 + y)1/2J2, 

with the energy levels: 

E :::: - (j.L3H2/21l2) {n + 1/2 + .../- a + [2k + 1 + (1/2)(1 + 41')1/2 + (m2 + a + j3+ y)1/2)2}-2, where n, k = 0,1,2, ..•. 

(c) The quantum motion in the electric potential (22) 

The e-equation (30) becomes 

6" + cote 6' - (m 2 /sin2e) 6 

- (a cot2e + {3 cote + y)6- s6:::: O. 

We make the following substitutions: 

z::::e2te , 6=zo(l-z)TT, 

where 

a = (1/4) + (1/2)(1/4 - y - s + i{3 + 01)1/2, 

T:::: (m 2 + 01)1/2. 

The T-equation is again hypergeometric. One finds 
(k :::: 0,1,2, ... ) 

S ::::: (1/4) _ y + a _ (2k + 1 + 2.../m 2 + 01)4 - 4j32 , 
4(2k + 1 + 2...jm2 + 01)2 

T= F[- k,k + 1 + (1/4 - I' - s + i{3 + 01)1/2 

+ 2(m 2 + a)V2; 1 + (1/4 - y - s + i{3 + a)l/2;z]. 

The energy levels are given by (31) (we only consider 
the case V:::: V1 ): 

E::::- (j.L3H2/2n2)t + 1/2 

j (2k + 1 + 2..Jm2 + 01)4 - 4{32j-2 + Y - a + .0...... _____ ==== ___ '--
4(2k + 1 + 2..Jm 2 + 01)2 ' 

where n,k = 0,1,2,···. 

B. The two-dimensional problem 

We use cylindrical coordinate Y, e,z. Schrodinger's 
equation is then written as 

y2 021/1 + Y 01/1 + 021/1 + y2 021/1 
oy2 oY oe2 oz2 

Variables can be separated in the usual way: 
1/1 = exp(ip .. zj1i}R(Y)6(e). (PI! is the z component of the 
momentum; it is a constant of the motion.) One has 
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r-
6"- (2j.L2/n2)f(e)6 + s26 = O. (36) 

Once again the radial motion is independent of fee). 
V = V1 or V2 and the radial equation is analogous to 
that encountered in the problem of the two-dimensional 
hydrogen atom12 or that of the two-dimensional oscilla­
tor. Energy levels are given by 

Case 1: V= V1 = - H/Y, 

E :::: (p;/2/.L) - 2 (j.L3H2 j1i2)(2n + 2s + 1)-2, 
(37) 

Case 2: V = V2 = Ky2, 

E:::: (p~/2j.L) + n..f1K(2n + s + I), (3S) 

n = 0,1,2"" while s may only take quantized values. 
These are found by solving (36). 

The e-equation is soluble in terms of known transcenden­
tal functions in seven cases: when fee) is given by (10) ••• 
or (16). Three of them have been treated in three dimen-
sions. Therefore we shall omit the corresponding two­
dimensional treatments. 

(d) The quantum motion in the electric potential (24) 
(two-dimensional). The 8-equation (36) becomes 

e"- (a sin2 e + (3 sine + 1') cos-2ee + s2e:::: O. 

We make the following substitutions: 

y = (1- sine}/2, e =yP(I-y}oT, 

where 

p:::: 1/4 + 1/4(1 + 401 + 4j3 + 41')1/2, 

a = 1/4 + 1/4(1 + 401 - 4{3 + 41')1/2, 

y(I-Y)T" + [(2p+ 1/2)- (2p + 20"+ l)y]T' 

(1/2)(- 2S2 + P + 0" + 4pa + I' - a) T :::: O. 

The solution is hypergeometric: 

T = F(- k,k + 1 + (1/2)(1 + 401 + 4{3 + 4y)1/2 

+ (1/2)(1 + 401 - 4{3 + 41')1/2; 

1 + (1/2)(1 + 401 + 4{3 + 4y)1/2;y), 

S2 :::: - a + [k + 1/2 + (1/4)(1 + 401 + 4j3 + 41')1/2 

+ (1/4)(1 +4a-4j3+ 41')1/2]2. 
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The energy levels follow from 

E =:: (P~/2p.) - 2(p.3 H2 /1l2) 

X {2 n + 1 + 2 .J:-_-a----:-+'[7k -:+--=-1 /7.:2:-+"""'-;:( 1:-C/774 )"(:::-1 --:-+-4:-Ca--:'"+-;4:-::::{3-:+:-47y');-1/"'2-+-:-:(1-:/:7.4 ):-7(1::--:-+---:4:-a-_--=47{3 -:+-4y:-. 7) 1;-;/=2 J2 }-2 

wheren,k = 0,1,2, .... 

(e) The quantum motion in the electric potential (25) 
(two-dimensional). The a-equation (36) becomes 

an - [a tan2(a/2)+{3 tan(a/2) + y] a + s2a = o. 

We make the following substitutions: 

z=_e ie , a=zp(1-z)oT, 

where 

p = (s2 + a - i{3 - y)1/2, 

a = 1/2 + (1/2)(1 + 16a)1/2, 

z(1- z) Tn + [(2p + 1) - (2p + 2a + 1)z]T' 

- (2pa + a + 4a - 2i(3) T = O. 

The solution is hypergeometric: 

T = F(- k,k + 2p + 1 + (1 + 16a)1/2;2p + 1;z), 

where 

p2 = _ i{3 + (1/4) {[k + (1/2) + (1/2)(1 + 16a )1/2]4 - 4{32} 

X [k + (1/2) + (1/2)(1 + 16a)]-2. 

One finds 

S2 = _ a + y + [k + (1/2) + (1/2)(1 + 16a)1/2]4 - 4{32 . 
4[k + (1/2) + (1/2)(1 + 16a)1/2]2 

The energy levels follow from 

+ [k + (1/2) + (1/2)(1 + 16a)1/2]4 - 4{32f2 y-a , 
4[k + (1/2) + (1/2)(1 + 16a)1/2)2 

where n,k = 0,1,2,···. 

(f) The quantum motion in the electric potential (27) 
(two-dimensional). The a-equation (36) becomes 

an - (a cot2(a/2) + (3 cot(a/2) + y)a + s2a =:: O. 

It deduces from the a- equation of Sec. II. B e by the 
substitution a -7 1f - a. Therefore, the wavefunction is 
obtained through the same procedure while the energy 
levels are given by the same formula. 

(g) The quantum motion in the electric potential (28) 
(two-dimensional). The a-equation (36) becomes 

en - (a tan2a + (3 tana + y) a + s2e =:: O. 

We make the following substitutions: 

z =:: 1 + e2ie, e =:: zP(1- z)o T. 

where 

p =:: (1/2) + (1/2)(1 + 4a)1/2, 

a = (1/2)(s2 + a - i{3 - y)1/2, 

z(1 - z) Tn + [- (2p + 2a + 1)z]T' 

- [2pa + p + a - (i{3/2)] T = O. 

The solution is hypergeometric: 

T =:: F(- k,k + 1 + (1 + 4a)1/2 

+ (s2 + a - i{3 - y)1/2; 

1 + (1 + 4a)1/2;z) 

[(1 + 4a)1/2 + 1 + 2k]4 - 4{32 
s2 = Y - a + , 

4[(1 + 4a)1/2 + 1 + 2k)2 

with energy levels 

[(1 + 4a)I/2 + 1 + 2k]4 - 4{32}-2 
y-a+ , 

4[(1 + 4a)1/2 + 1 + 2k)2 
wheren,k = 0,1,2,· ... 

C. Conditionally soluble quantum motions 

In this section we shall investigate the solubility of 
Schrodinger's equation when more complicated poten­
tials are conSidered, precisely those which lead to ellip­
tic functions in the classical theory. Since these poten­
tials are numerous we shall restrict ourselves to a 
special case in view of illustrating what we have called 
in a previous paperlO the "conditional solubility". 

We choose the special case 

I(a) = (1l2/2p.2) a cos-la 
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so that we investigate the quantum motion in the electric 
potential 

J = (p./€) [a(Il/2p.2)/(r2 cosa) + V(r)]. 

ConSidering the three-dimensional problem so that one 
has in spherical coordinates, the a-equation (30) can be 
written as follows in spherical coordinates: 

en + cote 6' - m 2 sin-2a a - a cos-Ia e - sa = o. 
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We make the following substitutions: 

u = cose, e = (1- u2 )-m/2 T; 

one finds 

u(l- u)(- 1- u) T" + (2 - 2m)u2 T' 

+ [(rn2- m + s)u + a]T= O. 

This equation is of the general type 

u(l - u)(a - u)f" + (au 2 + bu + elf' + (d + eu)f = O. 

We have studied it previously.6 Polynomials solutions 
exist which ensure the integrability of 1 e 12 provided the 
four following conditions are fulfilled: 10 

a + b + e = - j' (1 - a) 

aa 2 + ba + e = - j" a(a - 1) 

(where j' and j" are integers., 0) 

e = - n(n + a - 1) 

+ a "continuant" condition (see Ref. 10). 

Then one has T = z i '+1 (1 - z) i"+1 p(v), where p(v) 

denotes a polynominal of degree II. 

The first two conditions are satisfied if j' = j" = m - 1. 

The third implies m 2 - m + s = - (II + 2m)(m + II + 1) 
which gives the allowed s-values. 

The continuant condition is expressed by the vanishing 
of a continuant of order 11+ 1. We have previously seen10 

that each value of II must be analyzed separately leading 
to a quantization of the parameter a entering into the 
definition of the potential. For example, when II = 2 the 
determinant is of order three: 

d e 

e d+b 

o a+e 

o 
2(e - 1) 

d + 2b 

= O. 

In this case, the problem is soluble only if a = ± 2..J4m + 2. 
Performing the same operation for each value of II we 
arrive at the list of the allowed values for a. Inversely 
a being fixed (among the allowed values of course) II, m 
and s are also fixed so that arbitrary angular momentum 
states are automatically forbidden. We retrieve the con­
clusions of our preceding paper.10 

If II = 2, one finds s = - (m + 2)(m + 3) and the energy 
levels are 

Remark 3: This formula is analogous to the one 
giving the hydrogen spectrum except for the fact that 
the ground state and the first excited state are missing. 
Such a truncated hydrogen-like spectrum is found for 
every value of II. 

III. DISCUSSION AND CONCLUSION 

In this paper we examined the various potentials of the 
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type (1) which allow a complete integration of the equa­
tions of motion in both classical and quantum nonrelati­
vistic mechanics. Our first conclusion is that the three­
dimensional problem is completely soluble if the par­
ticle experiences the potentials (17), (20), or (22) while 
the two-dimensional problem is soluble when potentials 
(17), (20), (22), (24), (25), (27), or (28) are considered. 
To our knowledge these potentials were not treated be­
fore in the literature. It is interesting to compare the 
classical and the quantum treatments. As in our pre­
vious paper10 it is possible to exhibit analogies from 
two different points of view: 

(a) Firstly, there are some purely formal analogies: 
the resolution of Newton's equation and that of Schro­
dinger's equation offer many common points in spite of 
their well distinct origins. Variables separate in both 
equations for the same potentials. The changes of 
variables needed for the complete calculation are often 
identical. The analogy is sometimes very suggestive, 
e.g., the classical handling of potentials (22) or (25) 
leads to a trajectory whose equation contains complex 
quantities but so mixed that the overall result is real. 
The quantum equation leads to the same result: it is 
impossible to avoid the use of complex numbers in the 
calculation of the energy levels though the final expres­
sion is of course real. Beside the potentials mentioned 
above, there is a large class of potentials which allow 
a complete integration of the classical equation of 
motion in terms of elliptic functions. The corresponding 
problem in quantum mechanics leads to a conditional 
solubility analog to that previously encountered in a 
paper dealing with the motion in various magnetic 
fields.1 o 

(b) Physical analogies also exist. Firstly we note 
that in classical mechanics potentials (17), (20), and (22) 
allow an exact solution whatever the choice of the axis 
of reference while potentials (24), (25), (27), (28) are 
soluble only for a special choice of these axes. In quan­
tum mechanics the potentials of the first category are 
soluble in three dimensions (also in two) while those of 
the second category are soluble in two dimensions only. 
A Schrodinger's equation soluble by means of elemen­
tary transcendental functions (with energy levels) cor­
responds in the claSSical theory to a bounded trajectory 
expressible by means of circular functions: the para­
meters entering into the definition of the potential are 
submitted to analogous conditions in both mechanics in 
order to warrant a stable motion. Before terminating 
let us illustrate this last point with an example. Consi­
der the motion in the potential (17); the quantum solution 
is given in Sec. II. A(a). The formula which determines 
the energy levels is only valid under the conditions 

a - {3 + Y ., 0, 

a + (3 + Y ., O. 
(39) 

It is not difficult to show tqat these conditions are suffi­
cient to ensure the stability of the classical trajectory. 
Let us return to Sec. I. B(a). It is easily seen that the 8-
integration leads to circular functions only if b + a1'i2/ 
1J.2 > O. Otherwise, the quadrature leads ~o ~o?arith.ms 
and the trajectory spirals to r = 0 or to mfmlty. Smce 
b - 2f(8) = p2 > 0 it is sufficient that 

b + a1'i2/1J.2 ., b - 2f(8), where f(8) is given by (10). 
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After some reductions one obtains the condition 

O! + {3 cose + y "" 0 

to be compared with (39). 

In conclusion, the connection between the classical and 
the quantum treatments of the problem here investi­
gated can be stated as follows: when the classical tra­
jectory is stable (0 < r min < r < r max) and when it is 
expressible by means of circular functions, the corres­
ponding quantum problem is exactly soluble in terms of 
known functions and the energy spectrum contains a dis­
crete part. If the trajectory is stable but can only be 
expressed by means of elliptic functions, the connection 
with the classical motion disappears. However, in that 
case the example treated in Sec. II. C indicates that the 
quantum energy spectrum may be discrete if the para­
meters entering in the definition of the potential are 
limited to discrete values. Finally, it must be pointed 
out that exact motions in classical mechanics some­
times occur when very special initial conditions are 
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imposed. In this case no equivalence seems to exist in 
quantum mechanics. 
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Rigorous proofs are given of several theorems establishing the connection between time-dependent 
and time-independent multichannel scattering theory. The method of proof involves a 
two-Hilbert-space formulation of time-dependent multichannel theory and the theory of spectral 
integrals. In particular. the time-independent theory in the form proposed by Alt. Grassberger. and 
Sandhas is derived. 

1. INTRODUCTION 

Several authors have recently reconsidered the problem 
of deriving the standard time-independent nonrelativis­
tic quantum scattering theory from the time-dependent 
theory.1-7 The principal technical flaw in the early 
workS •9 on the subject was the absence of a rigorous 
justification for a certain interchange of the order of 
two integrations. The general theorem involved is by 
no means trivial and its proof occupies a sizeable num­
ber of pages in the most recent works.1- 3 

The object of this paper is to extend previous analy­
ses1- 5 which were confined to single channel scattering 
to the general multichannel case. At the same time the 
limited results of previous multichannel papers6 • 7 are 
extended. The conclusion is that the time-independent 
theory is specified by the multichannel scattering opera­
tor proposed by Alt, Grassberger, and Sandhas. 10.11 

It is also hoped that in addition to providing a rigorous 
justification for a formalism already in widespread use 
in theoretical physics, the analysis contained herein 
will also contribute to the discussion, current among 
certain mathematicians,1.12 of what form a time­
independent theory should have. 

On the technical Side, a question concerning the natural 
domains of definition of the time-independent formulae 
is resolved. The proofs in this paper are also some­
what cleaner than those given earlier for the single 
channel case. 1- 4 The key to this improvement is a 
theorem, given here as Lemma 5, that is a new contri­
bution to the (presently meager) literature on spectral 
integrals. 

The paper is organized as follows: 

In Sec. 2 the essential features of a two-HUbert-space 
formulation of the multichannel time-dependent theory 
are presented in abstract form. This formulation, the 
validity of which is established in an appendix, is pre­
ferred over the more traditional one because of the 
greater structural clarity it lends to the theory. Also 
discussed in Sec. 2 is a curious feature of the multi­
channel problem that restricts the operator topology that 
can be used. 

In Sec. 3A certain general mathematical results, includ­
ing the previously mentioned Lemma 5, are collected. 
The theory of spectral integrals1,2 .13-15 is then ex­
ploited to obtain time-independent representations of 
the multichannel wave operators (Sec. 3B) and the multi­
channel scattering operator (Sec.3C). The theorems and 
proofs of this section are presented without comment, 
the formulas obtained being largely self-explanatory. 
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The paper is concluded, in Sec. 4, with further discus­
sion of certain aspects of the analysis. 

2. TIME-DEPENDENT THEORY 

In this paper time-dependent multichannel quantum 
scattering theory is defined by the following assump­
tions, collectively called assumption (W). 

Assumption (W): 

(Wl) A spectral family ~ defines a self-adjoint linear 
operator H "" f >.d~ with domain :D(H) dense in a separ­
able HUbert space x. 
(W2) A spectral family E{ defines a self-adjoint linear 
operator H' == f~dE{ with domain :D(H') dense in a separ­
able Hilbert space X'. The operator H' has absolutely 
continuous spectrum. 

(W3) A bounded linear operator J: X' -) X is defined. 
The operator J maps :D(H') into :D(H), and the adjoint 
operator J* maps :D(H) into :D(H'). 

(W4) Multichannel wave operators Q±: X' -) X, 

Q == s - lim eiHtJe-iH't 
± t-+±CIO ' 

(2.1) 

are defined on X'. The adjoint wave operators Q±*: X -) 
X' have on X the representation 

Q* =:: W - lim e iH' tJ*e- iHt • 
± t-+±oO 

(2.2) 

The wave operators satisfy the equations 

(2.3) 

where I is the identity on X', and where the operators 
E± are the orthogonal projections of X onto the ranges 
of Q±. The operators Q± in addition map :D(H') into :D(H), 
and on :D(H') they satisfy the intertwining relation 

(2.4) 

(W5) The multichannel scattering operator S: X' -) X' 
is defined by 

(2.5) 

It is unitary if and only if E+ =:: E_. 

The validity of Assumption (W) is established in an 
appendix on the basis of certain properties that are 
known16 •17 to be satisfied by systems of distinguishable 
spinless particles interacting via square integrable 
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pair potentials. As it is doubtless of wider validity, it 
is presented here as the defining assumption. 

A curious, and important, feature of Assumption (W) is 
that the weak convergence in Eq. (2. 2) cannot be re­
placed by strong convergence. More precisely, it is 
proved in the Appendix that with the J defined there, 
strong convergence in Eq. (2. 2) implies that no bound 
subsystems of particles are possible. That is, if Eq. 
(2.2) holds in the strong topology, the theory must 
necessarily be a single channel theory. 

A consequence of the preceding remark is that the ele­
gant theory of Belopol'skii and Birman,5 which is couch­
ed in language similar to that of this paper, is a single 
channel theory. They prove that strong convergence in 
Eq. (2. 2) is a necessary consequence of a certain trace­
class condition (A). Since condition (A) is fundamental 
to their paper, it appears that their theory is restricted 
in an essential way to the single channel problem. 

Formulas derived in this paper for the multichannel 
scattering operator S are therefore valid only in the 
weak topology, in marked contrast to single channel 
formulas. This restriction causes no inconvenience in 
the present work, but it may complicate studies of the 
unitarity of the operator S. Unitarity arguments, such 
as those advanced by Lovelacel8 and by Sandhas and 
coworkers,IO.19 within the time-independent framework 
are certainly made more complicated and perhaps 
invalidated. 

Efforts usefully to circumvent this inconvenience have 
so far failed, the only method the authors have found for 
obtaining strong topology formulas being the following. 
In multichannel scattering theory the space Je' is actu­
ally a direct sum space (cf. Appendix), Jel = Ella Jea , 

where the separable Hilbert spaces Jea are the spaces of 
asymptotic states of the various channels a. Define for 
all cJ> = EllclPa in Je' the injection operators 

(2.6) 
a 

where E±(a) denotes the orthogonal projection of Je onto 
the image under Q± of the channel subspace Jea • The 
operator J+ is then to be used instead of J in formulas 
for Q+, and J_ in formulas for Q_. It is not difficult to 
prove that if J is replaced by J± in Assumption (W), then 
the assumption remains true even if the weak conver­
gence in Eq. (2.2) is replaced by strong convergence. 
Repetition of the analysis of this paper then leads to 
formulas that are valid in the strong topology. These 
formulas are, however, rather useless since advance 
knowledge of the ranges of the operators Q± is presum­
ed. The formulas analogous to those of Theorem 5 of 
this paper are in addition hopelessly more complicated. 

3. TIME-INDEPENDENT THEORY 

A. Lemmata 

Lemma 1: Let Hl be a self-adjoint linear operator 
with domain !D(HI ) dense in a separable Hilbert space 
Jel> and let H2 be a self-adjoint linear operator with 
domain :D(H2 ) dense in a separable Hilbert space Je2 • 

Let B: Je l ~ Je2 be a bounded linear operator with the 
property that B*, the adjoint of B, maps :D(H2 ) into !D(Hl ). 
Then, for all complex numbers z with nonzero imaginary 
part, the operators HIB*(z - H2 )-l and (z - H2 )-lBHl are 
bounded. 

Proof: The lemma has been established elsewhere 
(Lemma 1 of Ref. 1) for the case Je l = Je2 and B the 
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identity. Extension of that proof to the present case is 
straightforward, requiring only a modification of nota-
tion. QED 

Lemma 2: Assume the following. 

(i) Spectral families ~(l) and E/:2) are defined on res­
pective separable Hilbert spaces Jel and Je2 • 

(ii) There is a family of bounded linear operators Bt: 

Je l ~ Je2 that are labeled by a parameter t that varies 
over a (finite or infinite) interval t:. of the real line. 

(iii) There exists on t:. xA, where A is a (finite or infinite) 
interval on the real line, a complex-valued function 
u(t, A). For all A E A and all 1> E Jel> the vector 
u(t, A)Bt1> is Bochner integrable on t:.. 

(iv) There is a real-valued Lebesgue integrable func­
tion v(t) defined on t:. with the property that lu(t, A) :'S 

v(t) for all tEl!, A E A. 

Then the following statements are true. 

(1) Suppose that the spectral integral JAU(t, A)dEP)1> 
exists for aU tEA and all 1> E Jel . Then, the existence 
for some 1/1 E Je l of one of the integrals 

Jf'. dt B t (~ u(t, A) d~ (1)1/1) 

implies the existence of the other and their equality. 

(2) Suppose that the spectral integral J"u(t, A)dEP)1> 
exists for aU tEl! and all 1> E Je2• Then the existence 
for some 1/1 E Jel of one of the integrals 

implies the existence of the other and their equality. 

Proof: Suppose first that Je l = Je2 and thatE/:l) = 
EP). Then the lemma is an adaptation of Theorems 3 
and 3' of Ref. 1 to the case of bounded (instead of un­
bounded) operators B t • Extension of these previous 
proofs to the case Je l '" Je2 , EP) '" E/:2) requires only 
a modification of notation. QED 

Lemma 3: Assume the following. 
(i) A spectral family EP) defines a self-adjoint linear 
operator Hl == J AdE/:l) with domain :D(Hl) dense in a 
separable Hilbert space Je l . 

(ii) Families of (possibly unbounded) linear operators 
U(A) and V(A) are defined with domains containing :D(Hl) 
and ranges in a separable Hilbert space Je2 • The para­
meter A varies over a (finite or infinite) interval A of 
the real line. For all A E A the operator U(A) - V(A) is 
zero on :D(Hl ). 

Then, the existence for some 1/1 E Je l of one of the inte­
grals 

J U(A)dE/:l>lj; or J V(A)d~(l>lj; 
A A 

implies the existence of the other one and their equality. 

Proof: By assumption for any finite interval [a, b] 
the equation [U(A) - V(A)][ Ell) - EP)] 1/1 = 0 holds for 
all A in that interval. The truth of the lemma is now 
obvious upon expreSSing the integrals as strong limits 
of Riemann-Stieltjes sums. QED 

Lemma 4: Let ~ be a spectral family on a separable 
Hilbert space Je. Let U(A) and V(A) be two bounded opera-
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tor-valued functions on a (finite or infinite) interval A 
of the real line. Assume that on any finite interval 
K C A that 

(0 sup Ilu(A) II = M(K) < co, and 
A€K 

(ii) there exists L(K) < co and OI(K) > i such that for 
all A, IJ. IE K the condition II V(A) - v(lJ.) II :::; L(K) IA -
IJ.lct(K) holds. 

Then the following statements are true. 

(1) The existence for some 1/1 IE Je of one of the inte­
grals 

~ U(A)(~ v(IJ.)dE,,)dEA1/I or ~ U(A)V(A)dEA1/I 

implies the existence of the other and their equality. 

(2) The existence for some 1/1 IE Je of one of the inte­
grals 

implies the existence of the other and their equality. 

Proof: Statement (1) is a slight generalization of 
Lemma 5 of Ref. 1. The proof of statement (2) does not 
differ in any important way from that of statement (1). 

QED 
Lemma 5: Assume the following. 

(i) A spectral family E?,.(l) defines a self-adjoint linear 
operator HI = JAdE?,.(l) with domain ~(Hl) dense in a 
separable Hilbert space Je l • 

(ii) A family of (possibly unbounded) linear operators 
UA is defined on ~(UA) C Xl and has range in a separ­
able Hilbert space Je2 • The labeling parameter A varies 
over a (finite or infinite) interval A of the real line R. 
At each point A IE A the domain ~(UA) contains ~(Hl)' 
and for each finite subset K C A there exist nonnegative 
constants 01 = 01 (K) and (3 = (3(K) such that for all A IE K 
the inequality 

(3.1) 

holds for each cp IE ~(HI)' In Eq. (3.1) the subscripts 1 
and 2 indicate that the norms are to be taken in the 
spaces Je l and X 2 , respectively. 

(iii) There is a complex-valued function w(7/, A) defined 
on R x A such that the integral 

(3.2) 

exists for all A IE A and all cP IE ~(Hl)' For every finite 
subset K C A there are nonnegative constants L = L(K) 
and y = y(K) , with y > i, such that the inequality 

(3.3) 

holds for all 7/,7/','\ IE K. 

Then, the existence for some 1/1 IE Je l of one of the spec­
tral integrals 

f UAW (HI , A)dE~l>1f; or f UAw(.\, A)dEPl1fJ (3.4) 
A A 

implies the existence of the other and their equality. 
Further, if IJ.t IE Je 2 belongs to ~(U:) for all .\ IE A, the 
existence of one of the spectral integrals 

~ dEfl lw*(H1> .\)U:1/I or ~ dE?,.(llw*(.\, .\)U:1/I (3.5) 

implies the existence of the other and their equality. 
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Proof: It is suffiCient to prove the theorem for finite 
A. For if A is infinite the integrals in Eq. (3. 4) or Eq. 
(3.5) are understood to be strong limits of integrals 
over finite subsets K C A as K -? A. If the theorem is 
true for all finite intervals K, and if one of the integrals 
over K has a limit as K -? A, then the other integral has 
a limit and the two limits are equal. 

Assume therefore that A is finite with closure [a, b]. 
Let 11 = {a = Ao < At < ... < A" = b} be a partition of 
[a, b] and define 

(3.6) 

For each i, 1:::; i :::; n, choose .\~ IE A;, = (.\ 0_1> Ao], and let 
E(I)(A i ) == E(1)'\i - E(1)~_I" •• 

The theorem will follow from the definition of spectral 
integrals 1.2.9-11 if one can show that, for all 1/1 IE 

Xl' II rn1/l 112 -? 0 as 111 I -? 0, where 

(3.7) 

(3.8) 

From Eq. (3. 2) and Eq. (3. 8) one concludes that 
E(1)(A;,)Bi = B;, and hence that Bi maps Xl into ~(Hl). It 
therefore follows from Eq. (3.1) with K = A that 

(3.9) 

:::; ~ {0I1IHlB;1/I111 + (3IIBi 1/l 1Il}' (3.10) 
i 

Equation (3.3) now implies the easily derived bounds 

IIHlB;1/I1Il :::; L 1 ~ - ~-ll r IIHlE (l)(A;,)1/Ill l , 

IIB;1/I111:::; LI~ - Ai_llrlIE(1)(A;,)1/I1i1' 

(3. 11 a) 

(3.11b) 

These two bounds and the Schwarz inequality imply the 
further inequalities 

~ II HlBi 1/1 111 :::; L 111 1 y-l/2(b - a)1/2I1H1E(1l«a, b ])1/1111, 
i (3. 12a) 

~ IIB;1/IIil :::; L 111 1 r-l/2(b - a)1/211 E(l)«a, b ])1/1111> (3. 12b) 
i 

where E (ll«a, b]) = EJl) - E (1). It is now apparent, upon 
substitution of inequalities (3.12) into Eq. (3.10) that 
Ilr .. 1/I112 -? 0 as 1111 -? O. This proves the theorem with 
regard toEq. (3.4). The remainder of the theorem 
follows from the preceding argument with r .. in Eq. 
(3.7) replaced by r:, since the integrals in Eq. (3. 5) are 
just the adjoints of those in Eq. (3.4). QED 

B. Wave operators 

In this subsection time-independent formulas for the 
multichannel wave operators are given. 

There is first a two-Hilbert-space version of a result 
that has been proved for individual channels by other 
authors. 1-3,6.7 

Theorem 7: If Assumption (W) is true, the formula 

fl± = s - lim 'F iEJ (.\ 'F iE - H)-lJdE{ 
£-+0+ 

= s -lim ± iEJdEAJ(.\ ± iE -H')-l 
£-+0+ 

(3.13) 

is valid on Je' , and the formula 
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n±* = w - lim ± iEJdE{J*(A ± iE - H)-l 
e-+O+ 

= W - lim 'I' iEJ(A 'I' iE - H')-lJ*d1i' 
e-+O+ ~ 

(3.14) 

is valid on Je. 

Note: In the above and following formulas the ± and 
'I' signs are to be read with either all upper or all lower 
signs, and all integrals are definite integrals over (- co, 
co) unless otherwise indicated. 

Proof: The proof is given for the first of Eq. (3. 13), 
that of the other equations being essentially the same. 
Replace the asymptotic limit in Eq. (2.1) by the Abel 
limit 

"" n = s - lim Ej dte-<te±iHtJeTiH't. 
± < .... 0+ 0 (3.15) 

Use Stone's theorem to replace the unitary operator 
eTiH't in Eq. (3.15) by its spectral representation. Then 
use Lemma 2 to reverse the order of spectral integra­
tion and t-integration. The resulting formulas are 

n = s-lim J(E fX'dte(TiA-dte±iHtJ) dE'. 
± < .... 0+ Jo A 

(3.16) 

Evaluation of the Bochner integrals in Eq. (3. 16) yields 
the first of Eq. (3.13) QED 

A related problem of interest is the multichannel genera­
lization of the single channel operator n± - 1. The diffi­
culty is that in multichannel theory the ranges of the 
operators n± and I lie in different spaces. A Simple way 
around this problem is to replace I by J. This leads to 
the following theorem. 

Theorem 2: Let Assumption (W) be true, and let the 
multichannel potential operator V be defined by V == 
HJ - JH'. Then the formula 

n± - J = s - lim J (A 'I' iE -H)-lVdE~ 
e-+O+ 

= S - lim - J d~ V (A 'I' iE - H')-l (3.17) 
e-+O+ 

is valid on Je', and the formula 

n* - J* = w - lim JdE'V*(A ± iE - H)-l 
± e-+O+ A 

= W - lim - J (A ± iE - H')-lV*d~ 
e-+O+ 

(3.18) 

is valid on Je. 

Proof: A proof is given of the first of Eq. (3. 17), that 
of the other equations being essentially the same. Write 
n± - J as an Abel limit, 

n - J = s - lim Ej"" dte-€l(e±iHV - Je±iH' t)e'fiH' t. 
± < .... 0+ 0 

(3.19) 
Use Stone's theorem to replace the unitary operator 
e'fiH't in Eq. (3.19) by its spectral representation. Then 
use Lemma 2 to reverse the order of spectral integra­
tion and t-integration. The resulting formulas are 

n - J = s - lim JIEj"" dte(TiA-€)t(e±iHtJ -Je±iH't)\d1i". 
± e-+O+ \1 0 ) ~ 

(3.20) 
Evaluating the Bochner integral and applying the identity 

(z - H)-lJ - J(z - H')-1 = (z - H)-lV(z - H')-l 

yields 

(3.21) 

n± - J = s - lim 'I' iEJ (A 'I' iE - H)-l V(A 'I' iE - H')-ldE~. 
<-0()+ "-

(3.22) 
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The operator (A 'I' iE - H)-l V is, by Lemma 1, bounded. 
Lemma 5 can therefore be applied to replace the factor 
(A 'I' iE - H')-l by the numerical factor ('I' iE)-l. This 
proves the first of Eq. (3.17). QED 

The multichannel operators n± - J are not the only 
multichannel generalizations of the single channel opera­
tors n± - I. Another possibility is the multichannel 
operators J*n± - I. Time-independent representations 
of these operators can be derived in a manner analo­
gous to Theorem 2. Since they add nothing of interest, 
they will not be reproduced here. 

C. Scattering operator 

In this subsection time-independent formulas for the 
multichannel scattering operator S = n!Q are given. 

There is first a two-HUbert-space version of a result 
that was discovered for individual channels by Hun­
ziker.20 

Theorem 3: If Assumption (W) is true, the scattering 
operator S has on Je' the representation 

S = w - lim (iE/2)J dE{ (JJ*[!(A + Il + iE) -H]-lJdE;,). 
e-+O+ ,... 

(3.23) 
The integral in Eq. (3. 23) is a repeated spectral inte­
gral which may be evaluated in either order of integra­
tion. 

Proof: According to Eq. (2. 1) and Eq. (2. 2) the opera­
tor S has the representation 

S = w - lim eiH'tJ*e-2iHtJeiH't. 
1-+"" 

(3.24) 

Replace the asymptotic limit in Eq. (3. 24) by the Abel 
limit 

(3.25) 

Use Stone's theorem to replace the left-hand factor 
eiH't in Eq. (3. 25) with its spectral representation. Then 
use Lemma 2 to reverse the order of spectral integra­
tionand t-integration. The resulting formula is 

S = w - lim J dE' (Ej""dte (iA-<)tJ*e- 2iHtJ e iH' t). 
< .... 0+ A 0 (3.26) 

Use Stone's theorem again to replace the factor eiH't in 
Eq. (3. 26) with its spectral representation. Appeal to 
Lemma 2 to reverse the order of spectral integration 
and t-integration. The resulting formula is 

S = w - lim J dE{ (J{EL dte i (A+/J+i<)tJ*e-2iHtJ}dE'), .-0+ 0 /J 

(3.27) 
Evaluation of the Bochner integral in Eq. (3.27) yields 
Eq. (3. 23) with the indicated order of integration. To 
obtain the reverse order of integration apply Stone's 
theorem first to the right-hand factor in Eq. (3. 25). The 
proof then proceeds in the same way as before. QED 

A second theorem is a two-HUbert-space version of a 
result that was stated for individual channels by Ek­
stein9 and later modified by Sandhas et a1.10 .ll A proof 
(using other methods) for three-body systems is found 
in the book of Faddeev. 7 

'Theorem 4: Let Assumption (W) be true, and let 
R == S - I, where I is the identity on Je'. The operator 
R has on Je' the representation 
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R = w ~J!m (- 21Ti) J dE{ J lW, - /-L)T([A + /-L + iE ]/2)dE~, 
(3.28) 

where 

(3.29) 

for all real x and 

T(z) == (z -H')J*(z -H)-lJ(z -H') - (z -H') (3.30) 

for all complex z with nonzero imaginary part. The 
integral in Eq. (3.28) is a repeated spectral integral that 
may be evaluated in either order of integration. 

Proof: Using Eq. (3. 25) write R = S - I as 

R=w-limRe' 
(-+0+ 

Re = e 1; dte-eteiH't(J*e-2iHtJ - e-2iH't)eiH't. 

Proceed as in the proof of Theorem 3 to derive 

(3.31) 

(3.32) 

(3.33) 

X(E, A) = et
O 

dte (iA-€)t(J*e- 2 iHtJ - e-2iH't)eiH't, 
o (3.34) 

= (iE/2) J C([A + /-L + iE ]!2)dE~. (3.35) 

The operator C in Eq. (3. 35) is defined for all complex 
z with nonzero imaginary part by 

C(z) == J*(z - H)-lJ - (z - H')-l. 

= (z - H')-lT(z)(z - H')-l. 

ConSider next the operator 

Y(e,A) == - 2Et
O 

dte(i>"-e)t(A -H') 
o 

x (J*e- 2iHt J - e-2iH't)(A - iE - H')-leiH't. 

(3.36) 

(3.37) 

(3.38) 

The operator (J*e2iHt J - e2iH't) satisfies the conditions 
required of the operator B of Lemma 1. For each real 
A and each e > 0 the integrand in Eq. (3. 38) is therefore 
continuous in t and bounded in norm by a constant times 
the Lebesgue integrable function e-et. The Bochner inte­
gral Y(e, A) therefore exists. Proceed as with Eq. (3. 34) 
to obtain 

Y(E,A) = - ieJ(A -H')C([A + /-L + iE]/2) 
x (A - iE - H')-ldE~. (3.39) 

The factor (A - H') in the integrand of Eq. (3. 39) is a 
closed operator. It can therefore be factored to the left 
of the integral (p. 413 of Ref. 1). The factor (A - iE -
H')-l is a bounded operator (for fixed E > 0) which com­
mutes with E~ and can be factored to the right of the 
integral. It follows that the operator X(E, A)(A - iE -
H')-l maps X' into :D(H') and that 

Y(e,A) = - 2(A -H')X(E,A)(A - ie -H')-l. 

Apply Lemma 5 to obtain 

0= JdE{Y(E,A). 

Add Eq. (3. 41) to Eq. (3.33) to obtain 

Re = JdE{X(e, A), 

X(E, A) = X(e, A) + Y(e, A). 
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(3.40) 

(3.41) 

(3.42) 

(3.43) 

The operator H'C(z) is, by Lemma 1, bounded. One may 
therefore apply Lemma 5 to Eq. (3. 39) to replace the fac­
tor (A - iE - H')-l by (A - ie - /-L)-l. Substitute the re­
sulting representation for Y(E, A), together with the re­
presentation Eq. (3. 35) for X(e, A), into Eq. (3. 43) to 
obtain 

X(E,A) = (ie/2)J[1- 2(A -/-L - ie)-l(A -H')] 

x C([A + /-L + iE]/2)dE~. (3.44) 

Substitution of the representation Eq. (3. 37) for the 
operator C and straightforward manipulation of the 
integrand in Eq. (3. 44) yields 

X(e,A) = - 21TiJOe(A - J.L)T([A + /-L + ie1l2) 

x H(A - /-L + iE)[~(A + /-L + iE) - H']-l}d~. (3.45) 

By Lemma 1 the operator T(z)(z -H')-l is bounded for 
all z with nonzero imaginary part. The operator 
T([A + /-L + iE ]/2) therefore satisfies Eq. (3.1) and 
Lemma 5 can be applied to replace the operator in 
braces in Eq. (3. 45) by unity. This proves Eq. (3. 28) in 
the indicated order of integration. 

To prove the result with the reverse order of integra­
tion proceed as in the proof of Theorem 3 to derive 
from Eq. (3. 32) the formula 

Re=JU(e,/-L)dE,:, (3.46) 

U(e, J.L) = E1; dte(ill-e)teiH't(J*e-2iHtJ - e-2iH't). (3.47) 

Apply Lemma 5 to prove that the operator U(E, J.L) can 
be replaced in Eq. (3. 46) by 

U(E,/-L) = U(E,/-L) - 2(/-L - iE -H')-lU(E,/-L)(/-L -H'). (3.48) 

~pply the lemmata as before to prove that the operator 
U(E, A) has on ~(H') the representation 

(3.49) 

This representation is now substituted for U(E, J.L) in 
Eq. (3.46) to obtain Eq. (3. 28) in the reverse order of 
integration. The use of a representation for U that is 
valid only on ~(H') is justified by Lemma 3. QED 

An alternative version of the previous theorem is a two­
Hilbert- space version of a result established in a 
slightly different form in single channel theory by pre­
vious authors.l ,2 

Theorem 5: Let Assumption (W) be true, and let 
R == S - I, where I is the identity on X'. The operator 
R has on X' the representations 

R = w - lim s - lim (- 21Ti)J(Jd R 'O __ (A - J.L») 
£1-+0+ £2-+ 0+ ~ -1 

x T(A + ie2)dE~, (3.50) 

= s - lim w - lim(- 21Ti)JdE~ T(A + iE:!) 
£1-0+ ~-+O+ 

x (JdE~6"I (A - /-L»). 

The operator T and the function Oe are the same as 
those defined in Theorem 4. 

(3.51) 

Proof: A proof is first given for Eq. (3.50). By As­
sumption (W) the operator R = O+*fL - I = (0+* - O'!:)Q 
has the representations 

R = w - lim (eiH'tJ*O_e-iH't - e-iH'tJ*O_eiH't), 
t-+oo 

(3. 52) 
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= w _ lim ElfOOdte-E1t(eiH'tJ*rLe-iH't - e-iH'tJ*rLeiH't). 
E1->0+ 0 (3.53) 

The operator J*rL in Eq. (3. 53) has the representation 

(3. 54) 

F(~) = ~.r: dse-E2sJ*e-iHsJeiH's. (3.55) 
o 

The operator F(~) is clearly bounded for each ~ > O. 
It therefore follows from the Lebesgue dominated con­
vergence theorem for Bochner integrals that 

R = w - lim s - lim Gj~, ~), 
(1"" 0+ (2-+ 0+ 

(3.56) 

where the operators G±(E1' E2) are defined by 

G±(El'~) = E1.e dte-Elt(eiH'tF("2)e-iH't ± e-iH'tF(E2)eiH't). 
o 

(3. 57) 

It is clear from Eq. (3.57) and the foregoing analysis 
that 

for all El > O. It follows that 

R = w - lim s - lim G(E1 , "2), 
€l~O+ €2-JoO+ 

(3.59) 

To obtain integral representations of the operators 
G±(E1'€:l) use Stone's theorem to replace the right-hand 
factors e±iH't in Eq. (3. 57) with their spectral repre­
sentation. Apply Lemma 2 to reverse the order of spec­
tral integration and t-integration. Perform the remain­
ing Bochner integration to obtain 

G±(E1'~) = - iElJ[(A - iE1 - H')-l 

'f (A + iEl -H')-l]F(ddE{. (3.61) 

Substitution of Eq. (3. 61) into Eq. (3. 60) and manipulat­
ing the integrand yields 

G(€l'~) = - 2(E2/El)1 

+ J {(A + i€:l - H')[(A + i€l - H')-l 

- (A - iEl - H')-1]}F(E2)dE{. 

By theorem 1, 

(3.62) 

(3.63) 

Substitute Eq. (3. 63) into Eq. (3. 62). By Lemma 1 the 
operator in the braces in Eq. (3. 62) is a bounded opera­
tor. Lemma 4 may therefore be applied to obtain 

G(€l' E2) = - 2(E2/€1)1 

+ iE2J(A + i~ - H')[(A + iEl - H')-l 

- (A - iEl -H')-l]J*(A + i€:l-H)-lJdE{. (3.64) 

The operator J*(A + i~ - H)-lJ maps, by Assumption 
(W3), the space X' into :D(H'). It is therefore permis­
sible to commute the two left-hand factors in Eq. (3. 64) 
to obtain 

G(E1'€2) = J[(A + iE1 -H')-l- (A - iE! _H')-l] 

x T(A + i"2)[ i"2(A + 1"2 - H')-l ]dE~ + Z, (3.65) 

J. Math. Phys., Vol. 14, No. 10, October 1973 

z == - 2("2/El)1 + i"2 J[(A + iEl - H')-l 

- (A - iEl - H')-l ]dE\. (3.66) 

The operator Z in Eq. (3. 66) is, by Lemma 5, identically 
zero. The factor i~(A + i~ - H')-l in Eq. (3. 65) can, 
by Lemma 5, be replaced by unity. The final result, 
Eq. (3.50), is then obtained by replacing the operator 
[(A + iEl -H')-l - (A - iEl -H')-l] by its spectral re­
presentation. 

To prove Eq. (3.51) start with R = O:(~L - OJ and pro­
ceed analogously. QED 

It is amusing to compare Eq. (3. 50) with the analogous 
formula that one obtains with the injection operators 
J± of Eq. (2. 6). Define, for all complex numbers z with 
nonzero imaginary parts, the operators 

T±(z) == (z -H')J:(z -H)-lJjz -H') - (z -H'). (3.67) 

Then the operator R == S - 1 has on X' the representa­
tion 

where 

(3.69) 

R(2)(A, E1' E2) = JdE~[(El - ~)/21T](A - P, + iE1)-1 

x (A - P, + i€2)-1[TjA + i"2) - T+(A + i"2)]' (3.70) 

The term R(l) is what one expects, and the term R(2) is a 
remainder present because J+ ;" J_. The presence of this 
complicated remainder is of course a serious disadvan­
tage of the formula Eq. (3. 68), making it relatively use­
less. 

4. DISCUSSION 

It is to be emphasized that the analysis in Sec. 3 does 
not lead to any new conclusions. The operator T(z) de­
fined in Eq. (3.30) was originally introduced by Ekstein9 

and later modified by Sandhas and coworkers10 .ll into 
the form presented here. The importance of the present 
work is that it provides apparently the first rigorous 
proof that the multichannel operator T(z) is the one to 
study. 

A curious feature of the analysis is that if the weak con­
vergence of the adjoint wave operators 0: in Eq. (2. 2) 
is replaced by strong convergence, then the theory is 
restricted to single channel problems. Further com­
ment on this point is found at the end of Sec. 2. 

Another important feature of the analysis is that partial 
integration of Bochner integrals is avoided.21 This gap 
in technique is filled by the use of Lemma 5, which is 
apparently new.22 One advantage of proceeding this way 
is that the proofs of theorems are generally shortened. 
For example, the proof of Theorem 2 requires one para­
graph, while previous proofs1 •2 were considerably 
longer. Another benefit of avoiding partial integrations 
is that the time-independent formulas are seen to be 
valid on all of X', instead of being restricted 1 •2 •6 to 
:D(H'). The approach of this paper has, therefore, cer­
tain advantages over previous approaches to the prob­
lem. 

A third point concerns the interpretation of the function 
liE defined in Eq. (3. 29). It is this function that as E -7 0+ 
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is supposed to become the delta function that enforces 
energy conservation. Although this interpretation is 
probably correct, some caution in making it is needed. 
Lack of proper treatment of this point is known, for 
example, to lead to erroneous results in Coulomb scat­
tering. 23 •24 As an example of the pitfalls in the short­
range case one may use the techniques of Sec. 2 to 
derive the formula 

S = I + s ~J!m (- 21Ti) J (J dE~ (A - fJ)O. (A - fJ)n+*J)dE~. 
(4.1) 

The integral is a repeated spectral integral that can be 
evaluated in either order of integration. With a literal 
interpretation of Ii. as a delta function, the quantity 
(A - fJ)li. (A - iJ) would be zero in the limit E --7 0+. The 
conclusion would be that S = I, a clear absurdity. For­
tunately, closer analysis reveals that this literal inter­
pretation of 0. is not warranted in this example. When 
proper notice is taken of the order in which the opera­
tions in Eq. (4.1) are performed, it becomes clear that 
the factor (A - fJ)J is equivalent to, and can be replaced 
by, the operator V = HJ - JH'. Thus, Eq. (4.1) is equi­
valent to the representation 

S = 1+ s - lim (- 21Ti)J(JdE~Ii.(A - iJ)n+*V)dEI 
• (4.2) 

E~O+ p 

The remaining factor liE in Eq. (4. 2) probably does en­
force energy conservation, although no rigorous proof of 
that fact has been published. In the absence of such a 
proof, a degree of skepticism about the interpretation of 
0. should be maintained. 

In summary, the connection between time-dependent and 
time-independent multichannel quantum scattering theory 
has been rigorously established using techniques that 
effect certain mathematical economies over previous 
treatments of the single channel problem. Whether these 
techniques have further application in quantum scatter­
ing theory is a question for further research. 
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APPENDIX 

In this appendix the validity of Assumption (W) is est­
ablished for systems obeying Assumptions (A. I)-(A.lII) 
below. This discussion is appended both for complete­
ness and because previous formulations of a Similar 
sort9 .25- 2 7 have omitted proofs of certain details im­
portant for this paper. SpeCifically, proofs of the boun­
dedness and domain preserving characteristics of J and 
J* and of the existence of the limit in Eq. (2. 1) have not 
been given. These are provided in Propositions 1 and 
2. In addition it is proved in Proposition 3 that the weak 
limit in Eq. (2. 2) cannot be replaced by a strong limit, 
a result apparently new. 28 

Consider a system of particles undergoing a scattering 
process. Asymptotically the particles arrange them­
selves into clusters, each of which is in a speCific quan­
tum mechanical bound state. A specification of both a 
clustering A and the corresponding bound states bA is 
called a channel. The temporal evolution of the system 
from one channel to another is assumed to be consistent 
with the following principles. 

(A. 1) The temporal evolution of the complete system 
is governed by a one-parameter group e- iBt , where the 
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total Hamiltonian H is a self-adjoint operator with 
(dense) domain :DB in a separable Hilbert space x. 
(A. n) The temporal evolution of each channel 0/ is 
governed by a one-parameter group e-iBat, where the 
channel Hamiltonians He< are self-adjoint operators with 
(dense) domains :Da in separable Hilbert spaces X C X 
and with absolutely continuous spectra. The Hilbe~t 
space .1Co corresponding to a clustering with only one 
particle per cluster is the entire space X. The opera­
tors ~ for all channels 0/ with a fixed clustering A have 
a common self-adjoint extension HA with domain :D A = 
~C X. 

(A. Ill) The channel wave operators 

(AI) 

where the Pet are the orthogonal projections of X onto 
~, exist on X for all channels 0/. The orthogonality 
relation 

(A2) 

where 0aB is the Kronecker delta, is true if the channels 
0/ and f3 have the same clustering. The orthogonal pro­
jections .l'.1a) of X onto the ranges of n~a) satisfy 

(A3) 

for all channels 0/ and f3. 
Assumptions (A. I)-(A. III) are known to be true for sys­
tems of spinless particles that interact via square inte­
grable pair potentials.16.1 7 

To place the formalism in a two-Hilbert-space setting 
the direct sum Hilbert space X' = a1aXa is formed, and 
the multichannel Hamiltonian H' is defined for all 4> = 
a1a<Pa in :DB' C X' by the equation 

(A4) 

Communication between X' and X is provided by the 
injection operator J: X' --7 X defined for all 4> = a1a<Pa in 
X' by the equation 

(A5) 

With these definitions Assumptions (WI) and (W2) follow 
from Assumptions (A. I) and (A. II). Assumption (W3) is 
verified by the following proposition. 

Proposition 1: The operator J is bounded and maps 
:DB' into :DB' The adjoint operator J* is bounded and 
maps :Da into :DB" 

Proof: For each clustering A let JA: X' --7 X be de­
fined for all 4> = a1a<Pa in X' by the equation 

(A6) 

where L)t> denotes summation over all channels with 
the clustering A. By Eq. (A2) the operators JA are 
bounded: IIJA4>IIJ( ~ 114>l!x" Since 

J4> = ~JA4>, 
A 

(A7) 

where now the sum is over all clusterings A and hence 
is a finite sum, the boundedness of J and J* is proved. 

By Assumption (A. n),HA<Pa = Ha<Pa for <Pa E :Da with HA 
being self-adjoint and hence closed. It follows that 
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JAH'if! = "J](A)Ha¢a = "J](A)HA¢a = HAJAif! (A8) 
a a 

for if! E :DH,. Thus JA maps :DH, into:DA =:Dw Equation 
(A7) now implies that J maps :DH , into:Dw In a similar 
way the adjoint equation 

H'J*1/I = "J]J1HA1/I (A9) 
A 

is proved for 1/1 E :DH, thus proving that J* maps :DH into 
:DH" QED 

Assumption (W4) is established by noting that multi­
channel operators O±: X' ~ X are standardly defined 
by9,16,17.29 

O± if! == "J]O£"')¢a • (AI0) 
a 

Equations (2. 3) and (2.4) then follow from the corre­
sponding single channel properties. 16 .17 Equation (2.1) 
is verified in the following proposition. 

Proposition 2: The operators O±: X' --l> X defined 
by Eqs. (2. 1) and (AI0) are the same. They exist if 
and only if the channel wave operators O£"') exist for 
all channels a. 

Proof: Define O(t): X' --l> X for all if! = ifJa ¢", in X' by 

(All) 
a 

Let if! E X' and € > 0 be arbitrary but fixed. Choose a 
vector W E X' with only a finite number of nonzero com­
ponents 1/1", such that 

II¢ - 'JIll x ' < (€/2)(1 + MI)-l, (A12) 

where IIJII is the norm of J. Such a W exists since vec­
tors of that form are dense in X' • 

If the o±("') exist and if O± are defined by Eq. (AI0), then 
Proposition 1 and Eq. (A12) imply 

II[O± - o (t)]if! II ,C :S (€/2) + DI[O}a) _ eiHte-iHat]¢",llx' 
C '" (A13) 

Since there are only a finite number of nonzero terms 
in the sum on the right side of Eq. (A13) there exists a 
T such that for ± t> T the sum is less than (€/2). 
Existence of the limit of Eq. (2. 1) and its identity with 
the operator defined in Eq. (AI0) is established provided 
the channel wave operators exist. The converse part 
of the propOSition follows immediately upon restriction 
of Eq. (2. 1) to the subspaces Xa' QED 

Equation (2.2) follows from Eq. (2. 1) and the definition 
of an adjoint operator. Assumption (W4) is thus 
established. 

Assumption (W5) follows from Eqs. (2. 3) and (2.5). 
This completes the verification of Assumption (W). 

The weak convergence in Eq. (2. 2) cannot be replaced 
by strong convergence. One might think, on the basis 
of experience with the singlechannel theory that strong 
convergence should hold on the subspace of X of abso­
lute continuity of H. This is not generally the case, as 
the following proposition shows. 

Proposition 3: Let P be the orthogonal projection of 
X onto the subspace of absolute continuity of H, and 
suppose that the equation 

0* = s - lim eiH'tJ*e-iHtp 
± t-±oo 

(A14) 

is true. Then the only nonzero channel wave operator 
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is that for the free particle channel (the channel in 
which each cluster contains only one particle). 

PrOOf: Denote the free particle channel by a = O. 
The Hilbert space Xo corresponding to the free particle 
channel is the entire space X. Hence, if both Eqs. (2. 1) 
and (A14) are true, then both of the strong limits 

(A15) 

and 
(A16) 

exist on X. Thus E±(O) = P (Ref. 30, Theorem X 3.5). 
However, E±(a) X C PX for all channels a (Ref. 30, 
Theorem X 3.2). It now follows from Eq. (A3) that, ex­
cept for the free particle channel, all E~"') and hence all 
o£a) are the zero operator. QED 

Note added in proof: After seeing a preliminary version 
of this paper, E. Prugovecki [J. Math. Phys. 14, 957 
(1973)] independently proved some two-Hilbert-space 
formulas similar to those in this paper. F. Coester has 
pointed out to the authors that his two-Hilbert-space 
formulation in Refs. 25-27 also satisfies Assumption (W) 
of this paper. 
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Three structurally distinct and explicit expressions are developed for the boson polynomials. The 
relationship of these polynomials to the representations of the general linear group and the 
Gel'fand-Graev generalized beta functions is noted. A by-product of these results is a new, closed 
expression for the irreducible representations of the symmetric group. Some similarities, as well as 
dissimilarities, between the boson polynomial forms and the canonical tensor operator forms are 
presented and discussed, the origin of these properties being traced to the similarities and 
distinctions between Wigner coefficients and Racah coefficients. One of the boson polynomial 
expressions is used to prove an important new relation in the Racah-Wigner calculus: the identity of 
the set of extended projective coefficients to a subset of Racah coefficients. This relationship becomes 
one-ta-one for SU(2) and establishes a pattern calculus for the Racah coefficients of angular 
momentum theory. 

I. INTRODUCTION 

In two previous papersl ,2 (hereafter referred to as I 
and 11), we have utilized three principal tools in our in­
vestigations of the structural properties of the canonical 
tensor operators in the unitary groups: (a) the boson fac­
torization lemma3 ; (b) the pattern calculus4; and (c) the 
algebraiC relations which define the abstract U( n) 
Racah-Wigner calculus5- lO (coupling laws of Wigner 
operators, projective operators, etc.). Each of these 
tools together with their rich structural interrelations 
was demonstrated in I and n to be very effective for the 
calculation of certain explicit results (a class of reduced 
Wigner coefficients and Racah coefficients). 

These three basic tools are developed still further in 
the present paper. Such a step appears to be necessary 
because, despite the fact that we have, for example, given 
a complete description in I of how to calculate all U(3) 
reduced Wigner coefficients, the task of implementing 
this general procedure is extremely difficult. In broade­
ning our knowledge of the basic tools, we not only \lll­
cover interesting details about these objects as mathe­
matical structures, but also increase our capacity to cal­
culate explicit matrix elements, which is our ultimate 
goal. 

The factorization lemma has been a powerful tool for 
calculating explicit matrix elements,l,4,8,1l but its use­
fulness has at the same time been somewhat limited by 
the lack of a fully explicit expression for the general 
"boson polynomial" occurring in it. In Sec. n we supply 
briefly the past developments, and then give three alter­
native forms for these boson polynomials (each of these 
forms corresponds to a different structural develop­
ment), the derivation in each case proceeding directly 
from the factorization lemma itself. The significance 7 

of these polynomials as irredUCible representations 
(irreps) of the general linear group is emphasized, and 
the connection with the more recent work of Gel'fand 
and Graev12 is noted. An interesting by-product of these 
general considerations is a remarkable formula for the 
real, orthogonal irreps of the symmetric group. 

One form of the general boson polynomial is given in 
Sec. n as a sum over monomials in the "fundamental 
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bosons" ai, i,j = 1,2,··· ,no It is also known 7 ,8 that a 
general U( n) Wigner operator transforming as irrep 
[m 1 .. m2n ... m nn ] (man;" 0) is a sum of monomials in 
the fundamental Wigner operators 13 

~I T ~T'i. ~ 1.2.' ..••. 

By analogy to the explicit boson form of Sec. n, we are 
led in Sec. ill to consider a similar sum of monomials in 
the fundamental Wigner operators. The relation of these 
irreducible tensor operators to the canonical Wigner 
operators is discussed, and, in p,articular, a fully explicit 
expression is given for the (p 0) canonical Wigner 
operators in terms of the fundamental ones, the analogy 
in this case with the corresponding boson expression be­
ing quite striking. Aside from their possible calculation­
al value, such relations provide us with considerable in­
sight into the structure of the Racah-Wigner calculus 
and the Significance of operator patterns. What we have 
in mind here may be described briefly in the following 
manner: If the fundamental Wigner operators all com­
muted, then we would build an arbitrary Wigner operator 
as a sum of monomials in the fundamental Wigner opera­
tors (over the field of complex numbers instead of over 
group invariants for scalars) in exactly the same way 
that we build an arbitrary boson polynomial from the 
fundamental bosons. If this were actually the case, then 
Racah coefficients would be identical with Wigner coef­
ficients and operator patterns would be Gel'fand patterns, 
i.e., have a subgroup Significance. More precisely then 
it is the noncommutivity of the fundamental Wigner 
operators which accounts for the distinction between 
operator patterns and Gel,/and patterns and between 
Racah coefficients and Wigner coefficients. 

In Sec. IV and Appendix B a structural relation is esta­
blished between two objects which enter the Racah-Wig­
ner calculus in quite distinct ways-these objects are the 
Racah invariants and the extended projective operators. 8 

This relation has particular significance for U(2) be­
cause it now places the calculation of a class of U(2) 
Racah coefficients within the framework of the (extended) 
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pattern calculus rules. Furthermore, the detailed form 
of this relation suggests that it may be possible to gen­
eralize the pattern calculus beyond its present stage. 
The proof of the relation for U(2) is quite straightfor­
ward, but given in some detail because of its significance 
for angular momentum theory. The proof of the general 
relation for U(n) is difficult, drawing as it does on (a) 
the factorization lemma in a form using the results of 
Sec. II; (b) the abstract coupling law for extended projec­
tive operators; and (c) the complicated relation between 
Racah coefficients derived in Ref. 9 (as a consequence of 
the associativity law for Wigner operator multiplication). 
Despite this complexity, the proof is quite interesting be­
cause it places the Racah coeffiCient identity of Ref. 9 in 
new perspective as an essential and important relation 
in the Racah-Wigner calculus. 

II. THE BOSON POLYNOMIALS 

A. Preliminary remarks 

The expliCit determination of all finite dimensional 
unitary irreducible representations of the family of uni­
tary groups, U(n), is an essential and important task. 
Although an implicit construction was already known 
from the fundamental work of Weyl, 14 the first major 
step in the explicit construction was the determination 
of the matrices of the generators of all U(n) by Gel'fand 
and Zetlin 15 in 1950; the details of this determination, as 
well as the construction of the representations them­
selves, was given only later, by Gel'fand and Graev,12 
in 1965. An alternative construction of the matrices of 
the generators of U( n)--using boson operator techniques 
-was given by Baird and Biedenharn16 in 1963;the ex­
plicit representations in this latter construction are 
designated as "boson polynomials," and have been dis­
cussed subsequently by many authors. 17 

The finite dimensional irreps of the generators of U( n) 
also appear in a wider context: they are at the same time 
irreducible representations of the generators of the 
general linear !{youp, GL(n, C). This fact is basic to 
Gel'fand's approach; the special functions associated 
with these irreps turn out to be generalizations of 
Euler's beta function. 

From the boson opxrator point-of-view these irreps 
play a fundamental role in the problem of constructing 
tensor operators; this results from the fact that the 
boson polynomials occur in the factorization lemma, 3,4 
and their explicit form is required to evaluate the Wig­
ner operators which occur in that lemma. 

The present section has as one of its main purposes 
the explicit determination of the boson polynomials: 

~
rnl) 

B [m] (A). 

(m) 

Here A denotes the square array 

(

a 1 

A ~ a~ 
a 1 

n 

:: ::: :~), 
a; a~ 

(2.1) 

(2.2) 

with each a{ being interpreted as an independent boson 
operator. The labels (m) and (m') denote Gel'fand pat­
terns associated with the irrep [m).1 3 

Under the mapping A ~ U, where U is a unitary matrix, 
these polynomials become the elements of a finite dimen-
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sional unitary matrix irrep l m] of U( n). Under the map­
ping A ~ Z, where Z is an arbitrary non singular com­
plex matrix, these same polynomials become the ele­
ments of a matrix irrep [m] of GL(n, C). 7 

One of the purposes of the present section is to dis­
cuss in some detail the relationship between the Gel'­
fand-Graev construction of these GL(n, C) irreps and 
the boson polynomial approach. 

Let us suppose that one has been given the task of de­
termining all unitary irreps of U( n): how might one pro­
ceed? The most direct procedure would be to proceed 
along the path laid out by Weyl: here one knows how to 
construct explicitly the unique vector in the 'carrier 
space of an irrep [m] having maximal weight. Using 
lowering operators one then proceeds step-by-step to 
generate a basis of the carrier space, and then, using the 
matrices of the generators, to construct the finite trans­
formations of the group. Such a procedure is quite prac­
tical for U(2), useful even for U(3), but loses its utility 
for arbitrary n. It is important to note that if one uses a 
boson operator realization in the process, then the con­
struction of the basis vectors themselves is already a 
determination of certain of the boson polynomials 18,19 
and hence of the finite transformations. The most com­
plete results using this direct "lowering operator" ap­
proach have been given by Nagel and Moshinsky,20 
Louck,21 and Holman. 11 

The disadvantage of this direct approach is that it be­
comes exceedingly cumbersome as n increases, and 
correspondingly difficult to implement. Moreover the 
very cumbersomeness of the technique itself obscures 
insight into the structural properties of the results be­
ing obtained. 

The method employed by Gel'fand and Graev is very 
different. First they note that the irreps actually belong 
to GL( n, C), as mentioned above. This has the important 
consequence that one is allowed to use transformations 
generated by (non singular) upper (or lower) triangular 
matrices; such matrices are (in general) not unitary and 
belong only to GL( n, C). 

Let us illustrate this method for U(2). The represen­
tation consists in associating with each matrix 

the operator T(g) acting in the space H of polyno-m 1m2 

mials P(z) whose degree is (m 1 - m 2 ) or less. Then 
one has 

Upon introducing an explicit basis,! ,for H , m m1",z 

f m(z) := zm-m 2 ,m
2 

.;; m .;; m
1

, (2.4) 

one may proceed to determine the explicit matrix ele­
ments of the representation. That is, 

T(g)fm ~ 2] (m',m Ig)fm " (Gel'fand-Graev 
m' notation) 

(2.5a) 

_'>' i . m 1 -m 2 
- L..J Dm' m (g)fm• ,) = ---=::......-.-.:= 

m" 2 

(Condon -Shortley-Wigner notation). (2.5b) 

So .far, this procedure is quite familiar; the (m I, m Ig), 
or D{,,'m(g), are simply related to the Jacobi polynomials. 
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The novelty of the Gel'fand-Graev procedure is that they 
factorize the matrix g into three simpler GL(2, C) ma­
trices: 

g== C :),a,e 0, 

== zo~, (2.6) 

where 

z= (~~)'O=Gl ~J,~=G ~). (2.7) 

It follows that the representation T(g) similarly factors: 

T(g) = T(z)T(o)T(~). (2.8) 

Hence T(g) is completely determined by the special 
transformations T(z), T(o), and T(~), which are easily 
found. 

In order to make the method practical for GL( n, C), 
the calculation is embedded recursively into GL(n+1,C). 
That is, one partitions the (n + 1) x (n + 1) matrix gn+l 
in the form: 

and considers at each step the special matrices, 

and embeds Gn in Gn +l by the rule 

One then puts gn+l E Gn + l into the form 22 

gn+l =:: Azgn~' (2.13) 

where A = scalar,z E Z-,gn E Gn, ~ E Z+. 

The transformation T(gn+l) similarly factors: 

(2. 14) 

In Ref. 12, the explicit (but recursive) form for these 
special transformations T(z) and T(~) are given. (We 
discuss these results further in Sec. IIF below.) 

The method by which the boson polynomials are de­
termined by boson operator techniques-as will be dis­
cussed in detail below-stands in marked contrast to the 
method' of Gel'fand-Graev. The essential element in the 
boson approach is to employ a coupling law for the 
boson polynomials so that general Polynomials are con­
structed from more elementary constituents. We may 
express the coupling law in the symbolic form: 

~m') ( . ~ (w) ~. ~ B [m] (A) = B [m'] (A) B [mil] (A). 

(m). • (W) • 

(2.15) 
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In this symbolic expression the (W) represents a 
Wigner coupling, the dots represent Gel'fand patterns 
which are summed over, and the A represents the n x n 
boson matrix given in Eq. (2.2). 

The significant feature in this coupling approach is 
that the "group element" (represented by A above) is 
quite arbitrary, but fixed; it is the irrep labels them­
selves which change. By contrast, the Gel'fand-Graev 
approach generalizes the admissible group elements, but 
fixes the irrep labels. Both procedures employ an em­
bedding of U( n - 1) in U( n) to achieve a recursive 
structure. In the boson approach this step utilizes the 
factorization lemma (see Sec. IIC below), and the fact 
that special polynomials in U(n) are, in fact, U(n - 1) 
structures in their own right. That is, for mnn = 0, 

(m') 

[max]n-l 

B [m]n 

[max]n-l 
(m) 

(2. 16) 

(Note that Singular manifolds of lower dimension 22 do 
not enter in the boson approach.) 

It is one of the main purposes of the present paper to 
detail the construction of these boson polynomials, using 
boson operator coupling techniques. Such a procedure 
offers many advantages: 

(a) The coefficients occurring in the polynomials are 
always identifiable in terms of Wigner coefficients­
hence the structural properties of the polynomials are 
always clearly in evidence; 

(b) the polynomial nature of the functions is also 
clearly in evidence (this contrasts with the Gel'fand­
Graev approach where reciprocal powers of detAn _ 1 
occur); and 

(c) a variety of distinct expreSSions for the polyno­
mials may be derived depending on how one chooses to 
effect the couplings. 

We illustrate this latter point by constructing three 
different forms for the boson polynomials: a recursive 
Un : U n-l form [Eq. (2. 28)]; a completely explicit form 
built up from the totally symmetric monomials (Eq. 
(2. 29)]; and a form similar in structure to the Cartan 
product form for U( n) irreps [Eq. (2. 47)]. 

B. The totally symmetric boson polynomials B ([p 0] ) 
Let us begin the development of the general boson 

polynomial by considering first a speCial class: the 
totally symmetric polynomials 

~(m')~ 
B [p 6] 

(m) 

corresponding to the irrep labels [p 6]. This class 
serves as the "elementary constituents" for construct­
ing one form of the general polynomial (see Sec. lID), but 
is also of interest in itself, in that it possesses an ele­
gantly simple defining form, Eq. (2.19), and interesting 
discrete symmetry properties. 

The bosqn polynomials corresponding to the irrep 
labels [p 0] are easily derived from the general product 
law 7: 



                                                                                                                                    

1339 J. D. Louck and L. C. Biedenham: Canonical tensor operators. III 

B [m] (.KAY) 

(J1.) ~J1./)~ 

= L;, B~[m.J1.)V(X)B~[:~)(A)B~[~~)(Y)' 
(rn}(m ) () ( ) ( ') 

m m m (2.17) 

Here the tilde denotes matrix transposition; X and Yare 
arbitrary complex matrices. 

We now specialize the labels in Eq. (2.17): take [m] to 
be [p 6] and choose (J1.) = (J1./) = (max). Then the left­
hand side of Eq. (2. 17) takes the form: 

B(EJ~(XAy) ~(~, .!~y} (2. 18) 

Expanding this expression by using the multinomial 
theorem, one easily identifies the terms occurring in 
the right-hand side of Eq. (2. 17) (particularized to the 
special case under consideration). The result is ex­
pressed most elegantly in the following form: 

~
(m/)~ 

B [p 0] (A) = 

(m) 

n . j . 
x L; n (a~)'" i/«(II~)!, (2. 19) 

l£!J i ,j ~ 1 

where [W] and [W'] denote the weights of the lower and 
upper Gel'fand patterns, respectively, and ~ denotes 
the following square matrix of nonnegative integers with 
constraints on the sums of the entries in the rows and 
columns: 

(Ill 
1 (II~ ... (111 WI 

~= (Ill 
2 (II~ ... (II~ W2 (2,20) 

(Ill 
n a: ... (II~ Wn 

W' 1 W' 2 W' n 

The symbols Wi ( Wj) written to the right of r~w( i (be­
low column j) designate that the entries in row t column 
j) are constrained to add to Wi (W'.). The sum over @J 
in Eq. (2. 19) is to be taken over ail nonnegative integers 
(II{ (for i,j = 1,2, ••• ,n) which satisfy these constraints. 
[The letter W is used to accord with the fact that Wi and 
W', are the weights of the patterns (m) and (tn'), res­
pe'ctively. ] 

It is clear that the summation over ~ in Eq.(2, 19) in­
volves redundant summation parameters, but there are 
compensations. For example, one sees that Eq. (2.19) 
makes quite transparent some of the discrete symmetry 
properties of these totally symmetric polynomials. 

These symmetry properties can be described succinct­
ly in the following manner. Let <P denote a permutation 
1 -7 iI' 2 -7 i 2, •.. ,n -7 i ,where (i1 i2 ••• in) is a re­
arrangement of (12 ... n). Define the action of <P on the 
matrix A from the right by the rule 

(2.21) 
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where Ai denotes the ith column of A. Similarly, define 
the action of <P on the matrix A from the left by the rule 

(2.22) 

where Ai denotes the ith row of A. 

The permutation <P induces an action on the weights 
given by the rule: [<PW] = [W i Wi'" Wi]' 

1 2 n 

Let us note now that for the irrep [p 0] the Gel'fand 
pattern (m) is uniquely determined by the weight W. 
Accordingly, we may just as well denote these symme­
tric polynomials by the notation: 

~[W']~ ~[m']~ 
D [p 0] (A) = B [p 0] (A). 

[W] (m) 

(2.23) 

The symmetry properties which are now obvious from 
Eq. (2.19) may be expressed in the following two results: 

~[W']~ ([<PW']~ 
D [p 0] (A<P) = D [p 0] (A), 

[W] [W] 

(2. 24a) 

~ [W']~ ~[W']~ 
D [p 6] (<PA) = D [p 6] (A), 

[W] [<PW] 

(2. 24b) 

for each <P E Sn' To these symmetries we may also add 
the general transpositional symmetry which now as­
sumes the form: 

~[W']~ ~[W]~ D [p 6] (A) = D [p 6] (A). 

[W] [W'] 

(2. 24c) 

We would like to emphasize once again the general 
validity of these results, Eqs. (2. 19)-(2.24); in particular 
A may be replaced by an arbitrary complex mll;trix Z. 
Accordingly, these results apply to irreps [p 0] of both 
U(n) and GL(n, C). 

C. A recursive definition of the general polynomial 

Using the explicit form of the symmetric polynomials 
derived in Sec. lIB, above, it is quite easy to obtain a re­
cursive definition for the general polynomial, using the 
coupling law approach. In particular, the following two 
special couplings lead almost immediately to the desired 
form: 

Coupling form (a): 

L; [m] [b 0] (i~ ~ ~
(Y)y 

(P)(b) (m) (b) 

~( O)~ ~ (m') ~ 
x 13 [b 6] (A) B [m']n-l 0 (A) 

(b) (J1.) 
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Coupling form (b): 

[m']n-1 

[max]n-1 
(m') 

~ 
(m') ) 

x B [m']n-1 0 (A). 

(/l) 

(2. 25a) 

(2. 25b) 

The existence of these Wigner coefficient couplings 
used above follows from the significance of the boson 
polynomials, B('), as the carrier space of the groups 
U(n)*U(n). Several features in these two equations, 
(2. 25a, b), should be noted. Observe that it is the irrep 
labels [m] and the Gel'fand patterns (m) and (m') which 
are specified (fixed) in Eq. (2. 25a). All other labels ap­
pearing in this equation are either dummy summation 
patterns or are uniquely determined from [m], (m), and 
(m').23 

{ThUS, b is determined to be 

n n-1 
b=L;m;n-L;mtn- 1 , 

;=1 ;=1' 

and the operator pattern (y) is uniquely determined by 
the 6 pattern 

6(y) = [m] - [[m']n-1 0]. 

Also the Gel'fand pattern (b) is uniquely determined in 
terms of (11) and (m) by the weight 

W(b) = W(m) - W(/J) , 

so that the summation may, in fact, be considered to be 
only over the patterns (/l). Similar conventions apply to 
Eq.(2.25b) where in addition,the notation [max]n-1 has 
been introduced to deSignate that the labels appearing 
in row n - 1 of a particular pattern are chosen to be 
maximal.} 
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The idea now is to substitute Eq. (2. 25b) into Eq. 
(2. 25a) after evaluating the Wigner coefficients appear­
ing in the right-hand side of these equations. Observing 
that the couplings in the left-hand sides of these equa­
tions are in each case that of "kinematically indepen­
dent" boson polynomials, it follows immediately that the 
two Wigner coefficients in Eqs. (2. 25a, b) have the follow­
ing values, respectively: 

[:JTL([b 6]):JTL([m']n_10)/:JTL([m])}/2, 

[:JTL([c 6]):JTL([/l]n-1 O)/:JTL([m'] .. _l 0)}/2. 

(2. 26a) 

(2. 26b) 

Here :JTL([m]) refers to the measure of the highest weight 
tableau, and is just the norm of the boson polynomial 
specified by the irrep labels [m] [Cf. Ref. 16]. We also 
note that the U(n) Wigner coefficient appearing in the 
left-hand side of Eq. (2. 25b) is equal to the U( n - 1) 
Wigner coefficient obtained by deleting row n throughout 
the U(n) Wigner coefficient (and letting the two equal 
rows n - 1 of the Wigner operator merge). This identity 
of a special U( n) Wigner coefficient to a U( n - 1) Wigner 
coefficient is an easy consequence of the factorization 
lemma and the fact that 

(m') 

[maxL.-1 

B [m]n (An) = 13 

[max]n-l 

(m) 

(2.27) 

for mnn = 0, where An now designates the n x n array 
(a{), i,j = 1,2, ... , n, and A n - 1 deSignates the n - 1 x 
n - 1 array (ap i,j = 1,2 ... , n - 1. 

Putting together all of these results, we obtain the 
following explicit recursive definition of the general 
boson polynomiaJ11: 

= L; 0)) 

D. The general boson polynomial in an explicity totally 
symmetric expansion 

The object of this section is to combine the results of 
Secs. lIB and lIC into an explicit formulation of the 
general boson polynomial as a sum over ~. We shall 
demonstrate the result: 
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~m'~ ~rn'~ B [m] (A) =~1/2([m])~ C [m] (0') 

(m) (m) 
n 

(a{)"{/[(O'~)!] 112
0 (2.29) x n 

i.j = 1 

Clearly a form of this type must be valid, and it could 
be obtained by the direct iteration of Eq. (2. 28). How­
ever, the simplest way to obtain the coefficients 

(m'~ C [m] (0') 

(m) 

(2. ~O) 

is by appeal to the factorization lemma. Directly from 
Eq. (2. 29), we obtain 

~rn'~ 
C [m] (0') = 

(m) 

~~m') ~(O'i)~ ~(O)]~ [m] i~1 [(W i )!]-1/2 B [Wi 6] (A) [6] , 
(rn) i (0) (2.31) 

where i denotes the Gel'fand pattern having weight 
[0 ... OW i O ... 0] (W i in position i), and (0' i) denotes the 
Gel'fand pattern (inverted) 

(2.32) 

In Eq. (2. 31) we now use the factorization lemma in the 
form 

Bfr~~'~~(A) =,",jf 1r:~)6~ lr:t6~ ~-U" 
\ z / \ \ Z /1 '\ (O';l / J~'·(2. 33) 

arranging the factors in the order <W n 6)··· <W 2 6> 
<W 1 0). With this ordering only one term from each of 
the sums appears in the matrix element between the 
initial and final states appearing in Eq. (2. 31), and hence 
we find: 
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[D (r k)] = [m lk m 2 k ... m kk 6] 
- [mlk-lm2k-l ••• m k- 1k -l 6]. (2.35) 

We now assert that 

(2.36) 

The proof is given in the paragraph following Eq. (2. 41). 

The final form of the coefficient appearing in Eq. 
(2.29) is thus given by 

~tn'~ 
C [m] (0') 

(m) 

= {~:,~ 
Since only the (known) matrix elements of totally sym­
metric Wigner operators 1,24.25 enter into this determi­
nation [Eq. 2. 37)], we assert that the coefficient C(O') of 
(2. 30) is thereby known explicitly. 

Let us make the following definition pertaining to these 
coefficients 

( m'~ C [m] (0') == 0, 

(m) 

(2.38) 

unless 

(a) [rn] is a set of irrep labels of U(n) for mnn :;, 0, 
(lIZ) and (m') are Gel'fand patterns; 

(b) [QJ is a square array of nonnegative integers (O'{), 
i,j = 1,2, .. . n; 

(c) the following relations hold between the Gel'fand 
patterns and the array (0'): 

n i i-I 

,6 O'{=W;= ,6 m ji - ,6 rit j ,i_l,i= 1,2, •.. ,n, 
)=1 ;=1 )=1 (2. 39a) 

n j j-l 
,6 O'{ = Wj = ,6 mij - ,6 mi.j-l>j = 1,2, ... , n. 
, = 1 , = 1 , = 1 (2. 39b) 

Thus, if [m], (m), and (m') are specified, then the coef­
ficient is zero unless ~ satisfies the constraints indi­
cated in Eq. (2. 20). On the other hand, if @] is specified, 
then the coefficient is zero unless [m] is a set of integers 
satisfying mIn ?o m 2n :;, ••• :;, mnn :;, 0, 

n .. 
6 min = 6 O'{, 

i = 1 ;.j = 1 

and (m) and (m') are Gel'fand patterns having weights 
given by 

n n 

Wi =6 O'{(i = 1,2, ... , n), and Wi =6 0'], 
)=1 )=1 

respectively. 
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y sing now the fact3, 21 that the set of boson polyno­
~IllalS, Eq. (2.1), corresponding to all partitions em] of an 
mteger k also span the space of polynomials homogene­
o~s of degree k in the a{(i,j = 1, 2 ... ,n), we now deduce 
d.Irectly from Eq. (2.29) the following orthogonality rela­
tions: 

~m/~ (rn/~ L; L; C [m] (O!) C [m] (p) = 6(a)(6)' 
[m J (m)(m') 

(m) (m) 

(2.40b) 

We also note that these coefficients satisfy the follow­
ing symmetry relation in consequence of the transposi­
tional symmetry of the boson polynomials7: 

( m/~ ~(m)~ C [m] (a) = C [m] (O!). 

(m) (m/) 

(2.41) 

The proof of Eq. (2. 36) may now be given by the fol­
lowing argument: one can verify26 directly that the coef­
ficient given by Eq. (2. 37) satisfies Eq. (2. 40a). Using 
this result and Eq. (2. 34), we now see that relation (2.36) 
must be correct, except possibly for a sign. [That the 
sign is also correct may be ascertained by direct ex­
pansion of the left-hand side (the intermediate states 
are uniquely determined, so that no summation is in­
volved) using then the phase conventions of our earlier 
work to verify that the phase of each matrix element in 
the product is + 1.] 

Several special cases of Eq. (2. 37) are worthy of par­
ticular notice. 

The transpositional symmetry, Eq. (2. 41), of these coef­
ficients may then be used to obtain all the known sym­
metries27 of the 8U(2) Wigner coefficients entirely with­
in the framework of 8U(2) as pointed by the Bincer.28 
Let us also remark that the symmetries of Eqs. (2. 24a­
c) and the symmetry of the representation matrices 
under complex conjugation already suffice to deduce the 
full seventy-two symmetries of the 3j symbols directly 
from Wigner's original formulation. 29 

(2) For n = 3, we consider the special coefficient hav­
ing m 13 = m 23 = m33 = k =jl + j2 + j. This coefficient 
may also be expressed in the j m notation of angular 
momentum theory: 
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= (_ 1)jl-j2+m [ 2(k!) J1/2 C jl j2 j . 
- (2j + l)(k + 2)! m 1 m 2 m 

(2.43) 
The derivation of this result follows straightforwardly 
from Eq. (2. 37) upon using the subgroup reduction law 
and the expressions for the U(3) : U(2) reduced matrix 
elements given in Ref. 24. Since the left-hand side of 
Eq. (2. 29) becomes (alB) k for the special case under 
consideration [the measure factor is given by ~(kkk) = 
k! (k + I)! (k + 2)! /2], we see that Eq. (2. 29) becomes 
just a boson interpretation of Regge's result27 from 
which the seventy-two symmetries of the 3j-symbol are 
obvious. 

Before clOSing this subsection, we would like to note 
the connection of one of our results, Eq. (2. 29), with 
combinatorial mathematics: Suppose we denote by 
M(W, W') the number of square matrices [Q] having 
specified row sum W and specified column sum W' [See 
Eq. (2. 20)], and by K(m, W) the number of Gel'fand pat­
terns having irrep labels m = [m] and weight W. Then 
it is a direct consequence of the fact that the coefficients 
(2.30) are th.e elements of an orthogonal matrix, hence, a 
square matrIX, that the following identity must hold: 

M(W, W') = E K(m, W)K(m, W'), (2. 44) 
m 

where the sum is over all partitions m of the positive 
integer 

n n 

N = L; Wi = L; Wi. 
i= I ;=1 

(The fact that the coefficients (2. 30) are the elements of 
an orthogonal matrix is, of course, itself a consequence 
of the group property U(n 2 ) ::> U(n) x U(n) and the re­
duction of the totally symmetric irrep [N 6] of U(n 2 ) 

into its U( n) x U( n) irreducible constituents as discus­
sed in Refs. 3 and 21. Note further that if we sum Eq. 
(2.44) over all weights W and W' which add to N, then 
we obtain preCisely the relations between dimenSion 
formulas noted in Refs. 3 and 21.) 

It is a remarkable result that Eq. (2.44) has a purely 
combinatorial proof. 30 The relation is an immediate 
consequence of Knuth's algorithm31 which establishes 
(by a direct construction) the existence of a one-to-one 
correspondence between the set of matrices ~ having 
row sum W and column sum W' and the set of ordered 
pairs of column-strict plane partitions32 of the same 
"shape" and "type" Wand W', respectively. 

A column-strict plane partition of shape m is just a 
Young tableau which has mIn boxes in the first row, 
m 2n boxe s in the second row, ... , m n" boxe s in the nth 
row, which has been "filled in" in the usual way16 with 
the integers 1,2, ... ,n. Accordingly, the set of column­
strict plane partitions of shape m is in one-to-one cor­
respondence with the set of Gel'fand patterns having 
irrep labels m -= [m], i.e., with the set of triangular 
patterns 

{(
[(mm)]): (m) is a lexical pattern, Le., } 

satisfies the betweenness conditions . 

The "type" of a column-strict plane partition simply re­
~ers to the fact that WI l's, W 22'S, ... , W n n's appear 
m the Young tableau of shape m, that is, W is just the 
weight of the Gel'fand pattern. Accordingly, there is 
also a one-to-one correspondence between the set of 
column-strict plane partitions of shape m and tYjJe W 
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and the set oj Gel 'jand patterns having irrep labels m 
and weight W. 

Knuth's algorithm may now be restated in terms of 
the language of Gel'fand patterns: There exists a one-to­
one correspondence between the set oj matrices [ill hav­
ing row sum W and column sum W' and the set oj double 
Gel'jand patterns 

n n 

) ,-1 ,-1 (. (m ')) [m] is a partition of N = ~ Wi = ~ Wi,! 
) [m] : (m) has weight W, • 

(m) (m') has weight W'. ( ) 
2.45 

This result, of course, implies immediately that the mat­
rix C whose rows are enumerated by the matrices ~ of 
row sum W and column sum W' and whose columns are 
enumerated by the double Gel'fand patterns of type 
(2.45) is a square matrix. Indeed, the Knuth algorithm 
may now be used to give an alternative proof of the re­
duction relation 3 •21 between the totally symmetric 
irreps of U(n2) and the irreps of U(n) x U(n). (These 
relations, of course, still remain valid for the general 
linear group.) 

E. The general boson polynomial in a 'Cartan' 
decomposition 

While the forms, Eqs. (2. 28) and (2.29), are reasonably 
explicit (to the extent that one is able to write out the 
coefficients), neither of these forms reduces directly to 

B(~~J(A) = n (ai~ :::Z)mkn-mk+l.n, 
k=l 

(max) 

(2.46) 

but rather to an expanded version of the right-hand side. 
One recognizes that Eq. (2. 46) expresses the highest 
weight vector in [m] as a product of ~igh~st weight vec­
tors of its elementary constituents: [k; On-J Such an 
expression is familiar from the work of Cartan, and 
accordingly we seek to determine an explicit form for 
the general boson polynomial in the" Cartan" form. 

A form which does reduce immediately to Eq. (2. 46) 
is given by 

(2. 47a) 

where 
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k i = min - m i + 1 •n , i = 1,2,'" ,no (2. 47c) 

[This form is established directly from the coupling law, 
Eq. (2.15). For symmetry of form, a sum over Y n and 
Y' is indicated in Eq. (2. 47a), although these two Gel'fand 
p~tterns are, in fact, both maximal.] 

The following two results are useful for giving Eq. 
(2. 47a) a more expliCit form: 

~ 
(max) ~ • 12 ... j k 

B [kk···k 0n-j] (A)=(a 12 ... j ) , 

(max) 

(2.48) 

~(m'v ~(m')~ B [Ii _0] (A) = (- 1)<I>(m)-q,(m') B [k 6] (C), 

(m) (m) 
(2.49) 

where ¢(m) denotes the sum of all the entries in the 
Gel'fand pattern 

(
[k 6]). 
(m) , 

C denotes the cofactor matrix of A, i •. e., the el~npent in 
row i and column j of C is given by c~ = (- 1)' -) X 

12· .. j"·n -
a 12 .. ·j"·n' and,m;j = m1n - m j -;+l.j' 

(The notation 12 .•• i· .. n deSignates that i is missing 
from the string of integers.) 

For n = 3, Eqs. (2. 47) become fully explicit, i.e., all 
quantities entering into these equations are completely 
known. For arbitrary n all quantities entering into Eqs. 
(2.47) are, of course, known in principle (in the sense 
that definite calculational procedures exist for determin­
ing the quantities). 

F. Relationship to the Gel'fand-Graev results 
As we have discussed in Sec. ITA, Gel'fand and Graev 

determined GL( n, C) irreps by the finding the special 
functions appropriate to their factorization of the group 
element: gn+1 = Azgn~' It is not difficult now to deter­
mine the boson polynomials appropriate to these special­
ized group elements used by Gel'fand and Graev. 

The first particular result follows most easily from 
Eq. (2. 29): 

B(~:';)(;l :2'" :)=6(m)(m.) i~l (Zi)W i 

: (2.50) 
(m) 0 0'" Zn 

The second particular result follows most easily from 
Eq. (2. 28): Define the matrix 3- by 

1 0 0 0 

0 1 0 0 

3-= (2.51) 
6 0 1 0 

zl z2 zn-1 1 

Then 

~m'~ f) ~ ~([ l) ~u, [m] (3-) = B [m] (3) = , m]n 
(m) m'l b. ~([m n-1 



                                                                                                                                    

1344 J. D. Louck and L. C. Biedenham: Canonical tensor operators. III 

x (~~~~) ~b::H ~";2j~:,~) 
X (([~'~')-~ f<:.P ~7~i) 
X :~~ (Zi)Wj-W i /[(Wi- Wi )!]1/2. (2.52) 

Specializing Eq. (2. 52) still further by setting Z 1 = Z 2 = 
•.. = zn-2 = O,z,,_1 = t, and noting that 3 becomes 
1+ ten ,n-l' where e ij denotes a matrix unit, we obtain 
the following result: 

~m'~ ~(m)v H [m] (I+ ten,n-l) = B [m] (I+ te n- 1 ,n) 

(m) (m') 
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The functions defined by Eq. (2.52) are the generalized 
beta functions introduced by Gel 'jand and Graev. 12 Note 
that these important coefficients, which they studied, 
appear in the present work automatically, in terms of the 
matrix elements of a totally symmetric Wigner operator 
in U(n - 1) and a very simple U(n): U(n - 1) projective 
operator. [We would like to emphasize that the coeffici­
ent appearing in Eq. (2. 53) was actually calculated expli­
citly by Gel'fand and Graev. Hence, the explicit formula 
for the matrix elements of the totally symmetric U(n): 
U(n - 1) projective operators having minimal lower 
operator pattern is already contained in their result.] 

The results given above suffice to determine the rela­
tion of the Gel'fand-Graev results to the present boson 
operator approach. For the convenience of the reader 
who wishes to explore this relationship in more detail 
let us note that these authors12 introduced a new basis, 
1m)' , for the state vector 1m), employed in our work. 
The explicit relationship between these two bases is 

s-1 
n 

i~j== 1 

s-1 ]1/2 n (Pi s-1 -PJ' s-l) 
i <j =1' , 

(Pis - P j ,s-1 - I)! ~ (P i ,s-1 - Pjs)! 
i <j = 1 

I (m». (2.54) 

This change of basis is advantageous in that it removes 
all square root factors from the matrices of the genera­
tors. We will discuss the significance of this change of 
basis for Wigner operators in a future paper. 

G. Representations of the symmetric group as special 
cases of the boson polynomials 

The representation theory of the unitary group, U(n), 
necessarily contains as a special case the representa­
tion theory of the symmetric group; more importantly, 
there is, in fact, a deep interrelationship between these 
two groups, a subject which has been developed in detail 
in the monograph of Robinson. 33 Our purpose in the pre­
sent section is rather more modest: we wish only to 
demonstrate how our general results for U( n) may be 
specialized to yield the Young-Yamanouchi real-ortho­
gonal representations of the symmetric group Sn' Our 
result appears to be of mathematical interest,34 since 
it is both completely expliCit and in a form hitherto un­
obtained. 

Let us begin by considering the Cayley n x n permuta­
tion representation of S n' For this one lets <P denote a 
permutation by the rule: 

(2.55) 

Then the correspondence 

<P -7 [e. e· • .. e· ]=Im , 
'1 J 2 "n u-

(2.56) 

-where e i denotes a unit column vector with 1 in row i 
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and zeroes elsewhere-is a representation of Sn by n x n 
matrices. 

Since the general boson polynomial admits of an arbi­
trary interpretation of the argument A by an n x n inde­
terminate, it is a well-defined operation to replace A by 
I (l" in Eq. (2. 29). One obtains 

~m'~ B [m] (I(l') 

(m) 

where a (l' denotes the n x n numerical array 

(a (l' ) = [Wi e i , Wi e i ,"', Wi e i ]. 
1 1 2 2 n n 

(2.58) 

Let us next specialize to representations having 
labels [m] which are partitions of n, and at the same 
time restrict the two Gel'jand patterns (m) and (m') 
such that the weights [W] = [W'] = [i]. It follows at 
once from Eq. (2. 57), that these special "boson polyno­
mials" take the form: 

(2.59) 
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It is useful to give a special notation to these objects; 
let us define 

(2.60) 

and regard the Gel'fand patterns (m) and (m') as enu­
merating rows and columns, respectively, of the matrix 
D[m) (<5'). This matrix is indeed a unitary matrix rep­
resentation of the group Sn' since for each <5' E Sn we 
have the correspondence <5' -) D[m) (<5'), which is a rep­
resentation because of (a) the multiplication properties 
proven earlier for the lie ... ), and (b) the multiplication 
properties of the {I ()'} . 

The general transpositional symmetry of the boson 
polynomials now implies that 

[mJ (-1) _ [mJ () D (m)(m ,) <5' - D (m ')(m) <5' , (2.61) 

that is, these matrix representations are orthogonal, and 
hence real (since unitary by construction). That these 
representations are irreducible (for S n) also follows 
from the construction, alternatively from the general 
results of Robinson33 (see also Moshinsky35). 

Consider now the specific form taken by the matrix 
elements of these irreps. From Eq. (2. 37) we obtain 

D~:L(m')(<p) = en! /dim[m]]1/ 2 

where 

[O~ 
(0)/ ' 

(2.62) 

(a) the operator pattern (y k) is uniquely determined by 
the associated t:. pattern 

[My k)] = [m1k"t 2k •.. mkkO ..• 0] 

- [mlk-1m2k-1'" ffl k-1k - 1 0 ..• 0]; (2.63) 

(b) the notation ([1 i 0]) denotes the unique Gel'fand 
pattern having the weight [0 ... 010 .. , 0], with the 
1 appearing in the ith place, and dim [m] denotes 
the dimen sion of irrep (m] of Sn' 

Note, in regard to item (a) above, that since 

[that is, the Gel'fand pattern (m') has weight [w] = [i ]] , 
each pattern My k) has the form [0 ... 010 ... 0]. 

The result obtained in Eq. (2. 62) for the specific ma­
trix elements of the Sn irrep D[mJ (<P) has some quite 
remarkable features: 

(a) It is a completely explicit general result. Given 
the group element <P, the irrep label [m], and the 
two patterns (m), (m '), one finds the associated 
number D~:~(m')(<5') directly from the rules of 
the pattern cal~ulus for the fundamental Wigner 
operators (1 0). 

The importance of this result lies in the fact 
that all three of the known irreps for the symme­
tric group [Young's normal form36 (characteriz­
ed by integral matrix elements), Young's semi-
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normal form37 (characterized by rational matrix 
elements), and the Young-Yamanouchi real­
orthogonal irreps33 ,37-40] are defined through 
recursive procedures. 

(b) It is equivalent to the Young-Yamanouchi real­
orthogonal irreps. (For n "'" 4 we nave verified 
that the equivalence is, in fact, an identity; the ex­
plicit matrix elements involve phase chOices, 
hence, the identity of the two results cannot be 
asserted a priori.) 

(c) The Gel'fand patterns (y k) which enter into the 
construction of Eq. (2. 62) are closely related to 
the Yamanouchi symbol, Y, which is itself asso­
ciated with the Gel'fand pattern (m'). In order to 
make this point clear it is simplest to consider 
an example. 

Take the Gel'fand pattern (m') belonging to the 
S6 irrep [321] to be 

(m') =(3 2 1 0 0 0) 3 2 0 0 0 
2 2 0 0 • 
210 

1 1 
1 

One may associate5 to the pattern (m'), in a 
unique, 1 - 1 fashion, the lexical Young tableau: 

~
3 5 

2 4 

6 • 

Replacing every number, i, in this tableau by the 
value of 7 - i, we obtain a new (inversely lexical) 
tableau: 

F
42 

5 3 

1 • 

The virtue of this new tableau is that the num­
bers 1, .•• , 6 now give an -order in which the 
boxes may be removed to yield the subgroup re­
duction: S6 :::) S5 :::) '" :::) S1 = E. The Yamanou­
chi symbol, Y, is a sequence of numbers denoting 
the row from which these successive removals 
occur. In the example above One finds: Y = 
(3,1,2,1,2,1). Thus to each Gel'fand pattern 
(m) belonging to weight [i], one may associate a 
Yamanouchi symbol; this was first pointed out by 
Moshinsky. 35 

We have already noted that for each t:.(y k) we 
have the form [0 ... 010 ... 0]; accordingly we 
may denote each t:.(y k) by an integer j = 1 ... n, 
where j denotes the position of the 1 associated 
with t:.(y k)' It is not difficult to see that this 
mapping: (y k) -) t:. (y k) -) j k associates to the 
sequence of patterns (Yn) (Yn-1)'" (Yl) a sequence 
of integers:jnj,,_l ... jl' This sequence is pre­
Cisely the Yamanouchi symbol of (m'). Note that 
this occurrence of the Yamanouchi symbol is dis­
tinct from the correspondence 35: (m) -) Y-which 
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is an equivalence of labels-since the {(y k)} -7 Y 
mapping expresses now a structural property. It 
is quite intriguing to find that the Yamanouchi 
symbol enters so directly into the structure of 
the matrix element; clearly the general result, 
Eq. (2. 29), implies a corresponding generaliza­
tion of these ideas. 

(d) As Dr. de Vries has pointed out to us, the fact 
that the two (formally equivalent) labels (rn) and 
(m ') enter so unsymmetrically into the final for­
mula, Eq. (2. 62), is quite surprising and may indi­
cate that other, more symmetric, formulas exist. 

III. GENERAL STRUCTURAL FORMS OF THE 
CANONICAL WIGNER OPERATORS 

In this section, we develop expressions for the canoni­
cal Wigner operators in terms of sums of monomials in 
the fundamental Wigner operators. Our principal reason 
for presenting such expressions is to point out the 
structural similarities, as well as dissimilarities, exist­
ing between the relation of "boson polynomials" to 
"fundamental bosons" and the relation of "canonical Wig­
ner operators" to "fundamental Wigner operators." 

It is quite remarkable that the totally symmetric Wig­
ner operators may be expressed as a sum of monomials 
in the fundamental Wigner operators by using essentially 
the form (2.19) which expresses a totally symmetric 
boson polynomial in terms of the fundamental bosons 
{aH. This striking analogy in structures between two 
quite dissimilar sets of objects may be traced to two 
properties of the fundamental Wigner operators: 

(a) Any two fundamental Wigner operators having a 
common operator pattern commute, Le., 

(The nontrivial proof of this property is given in 
Appendix A). 

(b) Under the following unitary mapping 

(3.2) 

commuting sets are transformed into commuting 
sets. 

USing these two properties, we can now prove the fol­
lowing relation: 

V 
1 yCX~! x.~ [1 0] . ~ (a{)!, 

.=1 i '.J=l 

(3.3) 
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where 5(A) is an invariant operator. Note that the right­
hand side of this expression may be obtained from the 
right-hand side of Eq. (2. 19) by first ordering the bosons 
and then making the mapping 

Let us also note that the column and row sums in the 
matrix @] are now specified to be [~] and [W], respec­
tively. 

The proof of Eq. (3. 3) is quite simple: One first notes 
that the operator on the right-hand side effects the shift 
[rn] -7 [m] + [~] on the irrep labels [rn] of an arbitrary 
state vector. One next notes that under the unitary 
transformation, Eq. (3. 2), the right-hand side of Eq. (3. 3) 
undergoes the transformation appropriate to an irredu­
cible tensor operator labeled by irrep labels [p 0]. 
[This second property follows immediately from the 
corresponding property of the boson polynomials (Eq. 

n 

2.19) under the transformation a1 -7 L; a~uji'] 
)=1 

Together these two properties assure that the right-hand 
side of Eq. (3. 3) can differ from the totally symmetric 
Wigner operator 

by at most a multiplicative invariant operator. 

The eigenvalue s 5 A ( [m] + [~]) of the invariant opera­
tor 56. {the number which appears in Eq. (3. 3) when it 
acts on an arbitrary state vector having irrep labels 
[nt]} can now be evaluated by setting (m) == (0) and 
using the explicit matrix elements given in Ref. 24. The 
result of this calculation is 

where (~ ) denotes a binomial coefficient (defined for 
arbitrary variable x and nonnegative integers a). [Note 
that Pin - P jn < 0 in Eq. (3. 4) for i > j and one must use 

(- X) (x + a - 1) = (- l)a 
a a 

before writing the factors in terms of factorials.] 

Equation (3. 3) is now a fully explicit relation which 
may, in prinCiple, be used to calculate all the totally sym­
metric Wigner coefficients (since the fundamental Wig­
ner coefficients are known). It is, however, not very 
practical to calculate explicit matrix elements in this 
manner. Nonetheless, from the viewpOint of structure, 
Eq. (3. 3) is interesting in that it exhibits a quite general 
object in terms of its elementary constituents. 
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It is evident from the above derivation of Eq. (3. 3) that 
it is not necessary to collect together the commuting 
sets of operators in the order n . .. 21. A similar form 
must hold for each order T = (T 1 T 2 ••• Tn)' where T is 
any permutation belonging to Sn: 

(3.5) 

The eigenvalue of the invariant operator is now deter­
mined to be 

= [<~~1 ~Tin-:Tjn + ~Ti)/~Tin~-PTj~J 1/2 

Tj Tj (3.6) 
It is interesting to note that, depending on which order 

T one chooses, the matrix elements of the right-hand 
side of Eq. (3. 5) will have very different appearances. 
Thus, Eq. (3. 5) leads to a variety of different summation 
expressions representing the same Wigner coefficient. 
In particular, we point out that for n = 2 the ordering 
(T 1 T ) = (12) leads directly to Racah's form 41 of the 
SU(2r Wigner coefficients. [Using the pattern calculus 
rules, the evaluation of the matrix elements of the 
string of Wigner operators appearing in Eq. (3. 6) for 
n = 2 is quite easy.] 

The form (3.5) exhibits clearly that the structure of 
the totally symmetriC Wigner operators is essentially 
just that of the irrep functions themselves where the 
domain of definition of these functions is now the set of 
n2 fundamental Wigner operators. Observe, in particu­
lar, that whenever (r) is an extremal pattern, i.e., the ~ 
pattern is a permutation of the irrep labels [p 6], then 
in consequence of the fact that only commuting Wigner 
operators enter into the right-hand side of Eq, (3. 5), the 
Wigner operator is preCisely the corresponding irrep 
function defined on the fundamental Wigner operators. 

We next consider briefly the results of applying the 
preceding analysis to the general Eq. (2. 29). The bosons 
appearing in right-hand side of this expression are first 
ordered into sets having a common superscript, followed 
by the substitution 

(For notational convenience, we also change all lower 
case m' s to upper case M's.) The conclusion that the re­
sulting operator is an irreducible tensor operator 
characterized by the Gel'fand pattern 

(
[M]) 
(M) 

J. Math. Phys., Vol. 14, No. 10, October 1973 

1347 

goes through just as before, as does the shift property 
[rn] ~ [m] + [~]. However,because there are-in 
general-several canonical Wigner operators possessing 
this shift property, one can only infer the following 
general form: 

where the 

(3.8) 

denote invariant operators, and the sum is over all 
operator patterns (r') which belong to the multiplicity 
set determined by the ~ pattern of (r). 

A knowledge of the invariants (3.8) (for any specified 
T) would constitute the solution to the construction of the 
canonical Wigner operators (assuming that the set of 
equations (3.7) corresponding to the various operator 
patterns (r) is invertible). We can relate the eigen­
values of these invariants to a certain Wigner coefficient 
in the case of the ordering T = (n '" 21). Our method 
for obtaining this result constitutes a rederivation of 
Eq. (3.7) [for T = (n .•• 21)] directly from the factoriza­
tion lemma (illustrating once more the power of this 
lemma for obtaining abstract results). We sketch the 
technique. Using 

~M'~ ~(r)v ((r») B [M] (A) = ~1/2 ~ [M] [M] ~-1/2 

(M) (M) 1 M ') u 

in the left-hand side of Eq. (2. 29) (after a suitable 
change of notation) and 

(3.9) 

(3.10) 

in the right-hand side, we obtain the following identity: 
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In the next step, we order the fundamental Wigner 
operator factors in Eq. (3. 11) according to the value of 
j in the following manner: 

(all j = n terms) ... (all j = 2 terms) (all j = 1 terms). 

Now we take matrix elements between the states 

~~ 
(max) J 

[m] + [~] 
(m') 

( maxj~ [m] • 

(m) 

(3. 12) 

One readily sees that only matrix elements of the maxi­
mal type arise for the "upper" fundamental Wigner 
operators, i.e., all intermediate states which arise from 
the "upper space" are again maximal. USing repeatedly 
(for various initial labels [m]) the relation 

j = 2,3, ... , n (3. 13) 

for j = 1, 

we obtain from Eq. (3. 11) a matrix element relation 
which is just the statement of the abstract relation (3.7). 
Now, however, we also obtain the following additional 
relation for the eigenvalue of the invariant (3. 8) in the 
case T = (n •.• 21): 

~r'~ 9'(n ... 21) [M] ([m] + [~]) 
(r) 

== I1 In In I 

[ 

n (p. -po + ~.) J1/2 

;<j 0 1 (Pin - Pjn + ~i - ~j) 
(3. 14) 

Equation (3. 14) expresses the unknown invariants in 
Eq. (3. 7) for the ordering T = (n ..• 21) in terms of the 
matrix elements of a Wigner operator between maximal 
states. 42 These latter matrix elements are, of course, 
unknown in the general case, but Eqs. (3. 7) and (3. 14) do 
demonstrate clearly that the canonical determination of 
these particular matrix elements would constitute a 
complete solution to the problem of constructing the 
general canonical Wigner operators. (This important 
structural property of the factorization lemma has been 
emphasized repeatedly, and it is not surprising that it 
reappears in the context above.) 

In practice it has thus far proved difficult to use Eqs. 
(3.7) and (3. 14) as a direct method for obtaining explicit 
results. Even in the case of U(3), where the canonical 
splitting of the multiplicity is known completely, there 
appears to be no correspondingly simple structure to 
the matrix elements (3.14) 

In contrast to the similarity in form between Eqs. 
(2.19) and (3.3), the forms of the left-hand sides of Eqs. 
(2. 29) and (3. 7) have quite different appearances. This 
distinction arises because of the intrinsically different 
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character of Gel'fand versus operator patterns. This 
difference, in turn, may be attributed directly to the lack 
of a "subgroup law" for relating operator patterns in a 
Racah operator (the objects which are used to couple 
operator patterns). For totally symmetric operators, 
we have a one-to-one correspondence between operator 
patterns and ~ patterns; hence, a subgroup-like law al­
ways prevails. In the general case, however, we have a 
many-to-one correspondence between operator patterns 
and ~ patterns; the further lack of a subgroup Signifi­
cance for the entries in the operator pattern now admits 
the construction of objects (Wigner operators) more 
general than structures which are isomorphic to the 
boson polynomials. The appearance of the invariants in 
the left-hand side of Eq. (3.7) may be considered to be a 
consequence of these general structural distinctions be­
tween Gel'fand and operator patterns. Our principal 
reason for presenting Eq. (3. 7) has been to emphasize 
these distinctions. 

IV. THE RELATIONSHIP BETWEEN THE EXTENDED 
PROJECTIVE OPERATORS AND THE 
RACAH FUNCTIONS 

It is our purpose in the present section to demon­
strate that there exists a close structural relationship 
between two types of objects in the Racah-Wigner cal­
culus8 : the extended projective operators and the Racah 
invariants-despite the fact that these two structures 
entered the calculus in very different ways. This rela­
tionship is particularly close for U(2)-the two objects 
prove in fact to be identical-and one obtains in this case 
new inSight into the structure of the Racah function of 
angular momentum theory. 

Let us briefly recall the way in which the extended 
projective operators were introduced. 8 The projective 
operators themselves are the Wigner operators of U( n) 
projected onto the U(n - 1) subgroup; accordingly, the 
projective operators evaluated on U( n): U( n - 1) states 
become functions evaluated on the variables 
(m 1n ,m 2n , ••• mnn;m 1 n-l'" .,mn_l n-l)' The pattern 
calculus evaluates the elementary projective operators 
by the pattern calculus rules associated with the pattern: 

••• 
• • 

•• n dots 

• n - 1 dots, 

each dot being associated with a partial hook, P ij == 
mij + j - i. 

It was observed that the pattern calculus rules were 
meaningful if applied to an "extended" pattern where 
each row had n dots. (This introduced an additional 
parameter fIl lI •n - 1 .) In this way one defines extended 
projective operators, initially for elementary irrep 
labels of the form [i k 6 .. _ k]' and then generalizes (by 
Racah coupling) to all irrep labels. 

Clearly this introduction of extended operators is com­
pletely ad hoc; why should one expect such a concept to 
be of any use? The answer lies in the way that the pro­
jective operators of U(n) contain the projective opera­
tors of all lower subgroups U(k), k < n, very much in the 
manner of "nested Chinese boxes": under the two limit 
operators: first, lim: m n•n ~ - 00, followed by lim: 
m ,,-1,11- -> - rx" the projective operators of U( n) : 
U(n - 1) go over into projective operators of U(n - 1): 
U(n - 2). (In terms of patterns, this is just the removal 
of the last pair of dots.) 

The motivation behind the extended projective opera­
tors is now clear: They are functions defined by a 
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single limit (m n" ~ - (0), and are to be "intermediate" 
in the set of "nested" projective operators. The fact 
that the U(2) extended projective operators turn out to 
be Racah functions is remarkable-even though qualitati­
vely this is just what might have been suspected (or 
hoped! ) from the known limit relations between Racah 
and Wigner coefficients43•44 in U(2). 

We will now demonstrate this identity, explicitly for 
the U(2) case, but in a manner general enough to encom­
pass the U(n) case subsequently. As mentioned earlier, 
the definition of the extended projective operators is 
first given for the set of elementary irreps, and then 
extended to all irreps by the (symbolic) coupling law: 

~(r)~ [M] 
(rt) ext ~ . ~ {R}~' ~ [a] [b] 

, ext{R} . ext' 

(4.1) 

Equation (4. 1) denotes the Racah coupling of operator 
patterns in both upper and lower operator space of the 
two extended operators on the right-hand side. (The 
dots signify operator patterns summed over in the 
Racah coupling.) 

The symbolic coupling of Eq. (4.1) corresponds to the 
following fully explicit form 45: 

/(rx] + [A]\ 

\~y] + [A'Y 
[M] [x] ~(r)~ ~ ~ 
(r') ext (y] 

== :E l~MJ~~:]~~b~\(·.([X]+[A]) 
(a)(a) (r) ( (fj) 

(o:')(/l ') a). 

The symbolic coupling law of Eq. (4. 1) is reminiscent 
of a similar coupling law for Racah functions. To obtain 
this coupling law let us begin with a familiar identity 
for the Racah coefficients43 •44 

W(aabp; cy) W(a'ab'p; C'y) 

== :E (2A + 1) W(a'Aac; ac') 
A 

X W(bApC';b'c) 

x W(a'Ayb; ab'). (4.3) 

Using the orthonormality of the Racah functions, we may 
transfer one of the two W's on the left-hand side to the 
right-hand side. This yields 

W(aabp;cy) = :E (2,\ + 1)(2a + 1)(2b'+ 1) 
,\.b' 
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(4.4) 

The content of the explicit coupling law given in Eq. (4. 4) 
is much more easily grasped in a symbolic form empha­
sizing the coupling aspects. Let us introduce the opera­
tor pattern notation for Racah coefficients which empha­
sizes couplings 9: 

= [(2c + 1) (2j - 2p + 1)]112 W(j - P - 0, b, j, a; j - p, c), 
(4.5) 

wherej = ~(ml-m2),a Ha 1 -a2),b = Hb l -b2), 
c == t(c1 - cz),o == 01 - ~(b1 + 6z),p = PI - Hal + az), 
and c 1 + C z = a l + a2 + b 1 + b 2 • With this notation Eq. 
(4.4) becomes 

where, for example, 

For SU(2) the summation over 0' is redundant in Eq.(4.6) 
but has been included so that this equation becomes the 
correct relation between U( n) Racah coefficients. 9 

It will be observed that the recursion relation for U(2) 
extended projective coefficients Eq. (4. 2) and the Racah 
coefficients Eq. (4.6) are very similar. Indeed, under 
the proper correspondence, they become exactly the 
same [cf. Eq. (4.16) for n = 2]. Thus, it will follow that 
the coeffiCients themselves are identical if they agree 
for the fundamental operators. 

To establish this latter point it is only necessary to 
make a direct comparison. ConSider, for example, the 
Racah coefficient W( a, b, e + ~, ~; e, b - ~). From 
standard tables, one finds the explicit algebraic form: 

[(2e + 1)(2b»)1/ZW(a,6,e + Li;e,b-~) 

=(-) . [
<a + b - e)(a + e + 1 - b)] 1/2 

(2e + 2) (26 + 1) 
(4.7) 
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Next consider the extended projective operator de­
noted by 

We will evaluate this operator on the (extended) Gel'­
fand pattern 

by using the pattern calculus rules. These labels are 
assigned to the dots of the pattern calculus rules accord­
ing to 

• • 
• • 

m 12 + 1 1ft 22 

m 11 fft 21 -1 

Next we note that the operator 

corresponds to the shift pattern b. = [01], b.' = [10], and 
hence we get the arrow pattern 

.--. 
~ \ 
.~. 

The two arrows between rows imply the numerator 
factor: 

N2 = I[m ll + 1- (m 12 + 1)][m 22 - (lIt 21 -1)] I. 
(4.8) 

The two arrows within rows imply the denominator 
factor: 

D2 = l[m 12 -(m 12 + 1)][m ll + 1- (m 21 -1)] I. 
(4.9) 

Using the sign taken from the pattern calculus rules 
(a minus Sign in the present example) we get the result: 

=(-) [ 
(m12 - m ll) (m 22 + 1 - m 21) J 1/2 

(m 12 + 1- m 22) (m ll + 2 - m 21 ) (4.10) 

The problem is now to identify the symbols so as to 
achieve an identity. The correct identification is this 
[cf. Eqs. (4. 16) and (4.5)]: -
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2d 0 2b b _ a + e 0 b _ a _ e I f-b+d~ ( ) 

c - e + d ext 

= [(2e + 1)(2f + 1)] 1I2W(abcd;ef). (4.11) 

(Note that we can add a constant integer to either pattern 
on the left so as to eliminate the zeroes.) 

Using this identification we see that the evaluation 
given in Eq. (4. 10) becomes (for c = e + i, d = i, 
f = b - t): 

[(2e + 1)(2f + 1) )1/2W(abcd ;ef) 

__ )[(a+o-e)(a+e-O+l)]1/2 
- ( (2b + 1) (2e + 2) 

(4. 12) 

which is seen to be preCisely the result from standard 
Racah tabulations. In a similar way one may verify that 
the remaining spin-t Racah functions also coincide 
with their extended projective function counterparts. 
Thus, we have established the identity for the fundament­
al coefficients, and therefore (from the recursion for­
mula) in general. Equation (4.11) expresses this identity. 

We would like to remark that this identity is really 
quite astonishing for it asserts that the pattern calculus 
rules suffice to encompass in 5U(2) not only the Wigner 
operators, but the Racah operators as well. 

To illustrate the content of this remark let us recall 
that ,for totally symmetric operators [those of the form 
[p 0], which is the general case for SU(2)] , if either the 
upper or the lower pattern is extremal, we have a mono­
mial coefficient. The identity establishes this same 
monomial property for "extremal" Racah coefficients 
(a result, of course, previously known, but now interpre­
table uniformly). 

The identity may also be used, conversely, to extend 
to the pattern calculus, symmetries and results pre­
viously proven for the SU(2) Racah coefficients. In this 
way one may obtain the following extension of the numer­
ator pattern calculus rules. 

We obtain the following result: 

where !D denotes the dimension operator and the denomi­
nators are given by the pattern calculus rules 1 and have 
the explicit forms: 

(4. 13b) 

(4. 13c) 
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The values of the numerator function are given by 

(4. I3d) 

in which the sum over @] is over all square matrices 
with nonnegative integral entries with row sums and 
column sums given by [~,] and [~]: 

(4.13e) 

~l ~2 

This result still contains a summation over y', and an 
essential step in the proof is to establish the following 
subsidiary relation: 

O 1 { '} ([Y]n-l + [~{fJ'}]n-~ = un ess y = . 
(max) 

{4.I5} 

Let us assume for the moment that this result is cor­
rect. Then under the identification, 

(~: i : [~,J~ [~?~ ox, (~;~)) 
~~[x]n + [~]n ~~{r)~~[x]n~i 

= '} [Y]n-l + [~']n-l [~] [Y]n-l ([Y]n + [~']n)' 
{ {max} (r ) {max} ) {4.I6} 

Eqs. {4. 2} and {4. 14} become precisely the same. Since 
either Eq. {4. 2} or {4. 14} may be used to generate recur­
sively the corresponding general coefficients {for M nn 

;;" o} from the fundamental ones, it follows that Eq. {4. I6} 
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(The following notations have also been used in writing 
out the above results: ~l + ~2 = ~1 + ~2 =p,m'12 = 
m 12 + ~1,ml1 = m ll + ~i,m21 = m 21 + ~2' andP~j == 
m~j + j - i.) 

Let us note explicitly that this generalization of the 
numerator function, Eqs. (4. 13d, e), has a value which 
depends only on the differences P i2 - Pj !' i,j == 1,2. 

Let us now generalize-as far as possible-the results 
obtained above for SU(2). For the extended projective 
operators the results given in (4.1) and (4.2) are already 
in general form. The Racah coefficient relation, Eq. 
(4.6) is also already in general form when we interpret 
the operator patterns to be general ones. Recall that 
this relation is derivable directly from the associativity 
property of the Racah-Wigner calculuso 9 Comparing the 
general forms (4.2) and {4. 6}, one observes a similarity 
of structure, except that there occurs in Eq. {4. 6} an 
extra summation over the patterns 6' [which is but a 
single term for U{2}]. The idea now is to select the 
operator patterns in this expression such that the sum­
mation over {)' is forced to a single term. To this end 
we write out the following relation from Eq. {4. 6}, mak­
ing, however, some notational changes to enhance the 
similarity to Eq. {4. 2}: 

is correct in general (Mnn ;;" 0) if it is correct for the 
fundamental operators, i.e., if 

~~ x] + ~(T~ ~/ oj ~x~~ [Y] + ~{p} [Y] 
P ext 

The proofs of both Eqs. {4. 15} and {4. 17} are given in 
Appendix B, and hence establish the desired identity, Eq. 
{4.16}. 

Equation (4. 16) expresses the fact that the extended 
projective coefficients are, in the general case, identical 
to a subset of the set of general Racah coefficients. 

V. CONCLUDING REMARKS 
A number of new and interesting results have been 

obtained. These include: {a} the derivation of explicit 
expressions for the general boson polynomials, where 
the rich structure of these forms has been illustrated 
by showing how they yield as particular cases the Gel' 
fand-Graev beta functions and even the irreps of the 
symmetric group; {b} the derivation of corresponding 
forms for the canonical tensor operators; and (c) the 
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proof of a relation between extended projective coeffici­
ents and certain Racah coefficients. While none of these 
developments completes our principal goal of actually 
constructing the set of general canonical tensor opera­
tors, each suggests new approaches to this task. 

Consider first the boson polynomial expressions. 
These may now be used directly in the factorization 
lemma3 •4 •7 ,8 to evaluate the boson scalar product part 
of the lemma (Appendix B contains an example of this 
technique). One might hope then to see how to take the 
boson matrix element apart to determine the canonical 
Wigner coefficients appearing in the lemma. This is a 
difficult undertaking, but Holman 11 has made consider­
able progress in this direction, particularly, for U(3), and 
his efforts still continue (private communication). There 
are, of course, also other waysl, 4,8 of using the factori­
zation lemma. 

The results of Sec. ill already give the complete for­
mal answer for the totally symmetric Wigner operators. 
They also demonstrate how the general problem might 
be solved by directing ones attention to the determina­
tion of the particular Wigner coefficients appearing in 
Eq. (3. 14). More significant, perhaps, is the reminder 
that one must really deal effectively with the noncommu­
tative properties of the algebra-hence, with the Racah 
coefficients. 

It becomes increasingly clear that determining the 
fundamental Racah coefficients is the key to the whole 
problem of defining the canonical tensor operators. This 
remark becomes more meaningful when one realizes 
that Eq. (4. 6) may be interpreted as a relation which 
generates (recursively) the general Racah coefficient 
from the fundamental ones. It takes on an added Signifi­
cance if one accepts the conjecture8 that Racah coeffici­
ents limit to Wigner coefficients-hence, the whole 
Racah-Wigner calculus becomes a structure which is 
uniquely defined through its algebraic relations (coupling 
laws, orthonormality relations, etc.) and the fundamental 
Racah coefficients. (The Racah coefficients seem to 
play the r6le in defining the Racah- Wigner calculus 
which the structure constants play in a Lie algebra.) 

In view of the significance of Racah coefficients, the 
results of Sec. IV become more prominent. Further­
more, the fact that the U(2) extended projective coeffici­
ent takes the structural form exhibited by the right-hand 
side of Eq. (4. 13a) strongly suggests the existence of 
further generalizations of the pattern calculus rules. 

It is our plan to pursue these new approaches. The 
problem of giving an explicit determination of the funda­
mental Racah coefficients in U(3) is particularly chal­
lenging (and already solved, in prinCiple, in I and II), and 
we have already made considerable progress with this. 
The intricate relationship of Racah coefficients (sub­
group independent objects) to null spaces (a subgroup 
independent concept) of Wigner operators, and the rela­
ted concept of indecomposability46 are problems of 
considerable complexity, yet the unexpected elegant 
structure of results2 seems to justify the effort to 
understand them. 

APPENDIX A 

Commuting sets of elementary Wigner operators 

The purpose of this appendix is to prove the mutual 
commutivity of the Wigner operators belonging to the set 
of elementary Wigner operators having a common opera­
tor pattern, i.e., to prove the commutivity of the compo­
nents of the elementary t~nsor operator which trans­
forms like the irrep [1 k 0,,_ k] and effects the shift 
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k 

6. = L; 6.,,(7 5 ), 

5=1 
(AI) 

where the 7 i are any integers satisfying I -'" 7 1 < 72 

< •.. < 7 k -'" n. The commutation properties of the ele­
mentary projective operators have been discussed pre­
viously,4 but it is not at all obvious from those results 
which elementary Wigner operators commute. 

The notation 4 

(A2) 

where (7)k= (717 2 ", 7 k ),1 -"'7 1 < 7 2 <", < 7 k -",n, 
and (i) k = (i1 i2 ••• i k)' I -'" i1 < i2 < ... < i k -'" n, de­
notes the elementary Wigner operator which has the 
unique operator pattern determined by the shift (AI) 
and which has the unique Gel'fand pattern determined by 
the weight 

The result proved in this appendix can now be expressed 
in the following form: 

(A3) 

for each k = 1,2, ... , n, for each operator pattern (7)b' 
and for each pair (i) k' (j) k of Gel 'fand patterns. 

The proof can be given directly by using the product 
law8 for two Wigner operators. For the case of interest, 
this law becomes the following relation: 

(A4) 

In this result, the notation 

(A5) 

deSignates the operator pattern having the 6. pattern 

The crucial point to note in obtaining Eq. (A4) is that 
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choosing the two operator patterns (r)k and (P)k to be 
the same in the product law for 

has the effect of forcing the admissible final operator 
patterns in the Racah invariant to the single pattern 
(A5); hence, the irrep 1~I.bel~ of the Wigner coefficient 
are also forced to be [2 k 0n- ,..1. 

The proof of property (A3) now follows immediately 
from Eq. (A4) and the following symmetry property of 
the Wigner coefficients: 

(A6) 

for k = 1,2, ..• ,n. This symmetry relation can be 
proved by several methods-one such method would be 
to evaluate these matrix elements directly through the 
use of the subgroup reduction law and the pattern cal­
culus rules. A simpler method (since we do not re­
quire the explicit value of the coefficient) is to use in­
duction on n. 

We assume that Eq. (A6) is correct for n replaced by 
n - 1 and for each k == 1,2, •.. ,n - 1, and then prove 
its validity for n and each k == 1, 2, .•• , n. Since the re-
1ation is correct for n == 2, its general validity for all n 
then follows. 

To prove the validity of Eq. (A6) under the induction 
on n, we note that row n - 1 in the pattern (m) must 
have one of the following three forms: (a) [m] 11.-1 == 
[2,.. O,,-k-d or [2,..-1 0n-k];(b) [m]"_1 == [2,..-1 10,.-k-1]. 
In case (a) the patterns (i),.. and (j) k must !tav~ identi­
cal !abels.in their (n - l)st rows given by [1,.. 0,.- k-l] 
or [1 k-1 0n_ k]' respectively. Using the subgroup re­
duction law on both sides of Eq. (A6) and the assumed 
validity for n - 1, we easily establish the validity of Eq. 
(A6) for case (a). For case (b) there are two possible 
e~tries in the (n -.I)st rows of the patterns Ji) k and 
(J)k,namely,[lk 0n-k-l] in (i)k and [1k-l 0,.-,..1 in 
(j) k,or we may make the opposite choice. It is, how­
ever, no restriction to make the first choice since the 
second is equivalent to interchanging the left- and right­
hand sides of Eq. (A6). We next observe that 

[2 k 0,.- kl? [2 k 0,.- kl Y 
[2 k-1 1 0,.- k-J == 41 E,..n-l [2,.. 0n_ k-d , 

(m)n-2 (m),.-2 

(A7) 

where 41 denotes a nonzero number, and En n-l is one of 
the generators of U( n). We now use Eq. (A7) in each 
side of Eq. (A6) and perform the follOwing operations on 
each side: transfer E,. n-l to the position just left of the 
Wigner operator by replacing it by its Hermitian conju­
gate E,.-l.,.; evaluate the action of E"_1 n on the Wigner 
operator and the initial state vector. The result of 
these straightf9rward s.teps is: Equation (A6) is valid 
f9r [~] ,.-1 = [2 k-l 1 0,.- k-d if it is valid for [m] ,.-1 = 
[2 k O,.-Jl-d. Since the latter result has already been 
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proved lcase (a)], the validity of Eq. (A6) for case (b) is 
also proved. The induction loop has now been closed, and 
the general validity of the symmetry relation (A6) 
established. 

APPENDIX B 

The relation of the extended fundamental projective 
coefficients and Rac~h coefficients 

The purpose of this appendix is to prove Eqs, (4. 15) 
and (4. 17) of Sec. IV. We begin with the proof of Eq. 
(4. 17). The key relation for giving the proof is Eq. 
(2. 25b) of Sec. II. Using this relation and properties 
(2. 26b) and (2.27), we easily obtain the following result 
which is valid for i,j < n: 

where [11],.-1 = [111.,.-1 112.,.-1 •. , 1I,.-l,n-l] = [m In m2n 
.•. m n- 1 n], lm]n-l = [m 1 n-1 m 2 n-l .•. m n- 1 ,.-1], 
and simiiar definitions are' made {or the labels 'with 
primes. The number k as well as the operator patterns 
(y) and (y') are uniquely determined in terms of the 
specified labels. 

We now proceed to simplify Eq. (Bl) by effecting the 
following four operations: (1) Set [v'] -1 == [V]n-1 + 
.6,._l(r) and [m']n-1 == [mJ"-1 + .6,.-1(P) for some r and 
P selected from 1 to n - 1. (2) Apply the factorization 
lemma to each Side, i.e., the factorization lemma for 
U( n) in the left-hand side and the factorization lemma 
for U(n - 1) in the right-hand side. (3) Apply the U(n): 
U( n - 1) subgroup reduction law to the fundamental 
U( n) Wigner operators which appear at step (2) in the 
left-hand side. (4) Use the orthonormality of the funda­
mental U( n - 1) Wigner coefficients to move all U( n -1) 
Wigner coefficients to the right-hand side of the equa­
tion. The result of these operations is the following ex­
pression: 
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in which the pattern (1I')n-2 is fixed, but arbitrary. 

We next perform the operations as follows on Eq. 
(B2): (1) Add mnn to all of the initial and all of the final 
irrep labels in the left-hand side (this does not change 
the value of the matrix element). (2) Replace min by 
min - m n ,. and m i •n- l by mi,n-l - m n ,. for i = 1,2, ... , 
n - 1 in both sides of the equation resulting from step 
(1), noting that the summation part of the right-hand side 
is unaltered by these SUbstitutions. (3) Separate off the 
terms of the right-hand side which contain m nn , noting 
that this factor is [(P pn -Pnn + 1)/(P rn -Pnn»)1/2 
(originating entirely from the measure factors preceding 
the summation). (4) Take the limit of the resulting 
equation as mnn --'> - <Xi. The result of these four opera­
tions is an equation which relates an extended fundamen­
tal projective coefficient in U(n - 1) (we know these 
limit relations are valid for the fundamental operators) 
to a certain sum over U( n - 1) Wigner coefficients. 
Finally, we perform the last operation: (5) Replace n by 
n + 1 and make a change of notation so that the left-hand 
side becomes the left-hand side of Eq. (4.17). The re­
sult of these operations is the following expression: 

= r~([Y])~([x] + A(T»ll/2 

L!D([x))~([y] + A(P»J 

6 lAx] + A(T~ 
X i,(a)(K)(B)(B') \ \ (a') ) 

fry] + A(P~\ 
\ «(3') )/ 

(B3) 

in which (a') is a "free" pattern, and ~ is the dimension 
operator. 

We have now expressed an extended fundamental pro­
jective coefficient in terms of a summation over four 

J. Math. Phys., Vol. 14, No. 10, October 1973 

1354 

U( n) Wigner coeffiCients. It remains to be demonstrated 
that the right-hand side of Eq. (B3) is just the special 
Racah coefficient appearing on the right-hand side of 
Eq. (4.17). This requires further manipulation of the 
Wigner coefficients to which we now turn. 

We use the identity: 

(B4) 

to obtain the following relations: 

(B5) 

The last step in this result requires justification. 

In order to justify the last step in Eq. (B5), we con­
sider the following couplings of irreps: 

[6 -k] ® [x] --,>[y], 

[x] ® [6 -k] --'> [y], 

where 

" k = 6 (X i - Y i)2: O. 
;= I 

(B6a) 

(B6b) 

(B6c) 

In the case of the coupling (B6a), the Wigner coefficients 
are the ones designated by 

(B7a) 

These coefficients are zero unless the pattern 

([xl) 
[y] 

(B7b) 

is lexical, i.e., unless Xl 2: Y I 2: X 2 2: Y2 2: ••• 2: Xn 2: Yn • 

This nontrivial property is verified by direct examina­
tion of the reduced matrix elements given in Refs. 1 and 
24. In the case of the coupling (B6b), the Wigner coef­
ficients are the matrix elements denoted by 
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(B8) 

where (r) denotes an operator pattern belonging to the 
multiplicity set determined by the following 11 pattern 
belonging to [x]: 

(B9) 

However, since the multiplicity of [y] in the direct pro­
duct (B6b) is the same as that in (B6a), namely, one if 
conditions (B7b) hold or zero otherwise, the coefficients 
(B8) must vanish except for precisely one operator pat­
tern in the multiplicity set defined by the t. pattern (B9), 
and even then the coefficient must vanish unless condi­
tions (B7b) hold. We assert, and later justify, that the 
unique operator pattern for which the coefficients (B8) 
are not identically vanishing is 

~x~ ~[X]) 
(r) = [Y]n-l . 

(max) 

(BlO) 

Since the ordering of the coupling of two irreps in which 
there is no multiplicity in the direct product can at most 
change the overall phase, the following relation must 
hold: 

where o( [x]; [y]) is an integer which depends at most 
on the x i and Y i' Equation (B11) is the result which we 
have used in making the last step in Eq. (B5). 

One may still question whether or not the identifica­
tion (B10) is correct, or whether or not it is a question 
of choice. Let us defer this problem for the moment, 
noting, however, that the identification is unambiguous in 
the case of U(2) and in the case of U(3). [The U(3) case 
may be verified directly from the intertwining number­
null space diagram given in Ref. 2.] 

Equation (B3) may now be brought to the following 
form by using Eq. (B5) to replace the second factor in 
the right-hand side and a similar expression to replace 
the third factor: 

= (phase) ~([x] + t.(r»/~([y] + t.(p» 
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where in obtaining this result we have recognized that 
certain of the summations appearing in the right-hand 
side of Eq. (B3) became sums over intermediate states. 
The phase in this result is given by 

(B13a) 

where 

liTP([x]; [y]) = r - p + Ii([x] + l1(r), [y] + l1(p» 

-li([x];[y]). (B13b) 

We are now ready to make the last step in the proof of 
Eq. (4. 17) of Sec. IV. This is accomplished by summing 
both sides of Eq. (B12) over all patterns (a'). The right­
hand side then becomes [see Eq. (2. 46) of Ref. 8] 
(phase) ~ ( [x]) + l1(r» (the Racah coefficient of Eq. 
(4. 17)]. 

Since summing Eq. (B12) over (a') also puts the dimen­
sion factor ~([x] + t.(rn in the left-hand side of Eq. 
(B12), we obtain the desired result, Eq. (4.17), except 
possibly for phase. We argue that the phase on Eq. 
(4. 17) already agrees with the convention set forth in 
Ref. 8, namely, that in the limit Yn ~ - 00, the fundamental 
Racah coefficient should become a square-bracket coef­
fiCient of the same labels. This is precisely the case 
for Eq. (4.17) since the extended fundamental projective 
coefficient then becomes an ordinary reduced Wigner 
coeffiCient which is, in turn, just a fundamental square­
bracket coefficient because the following U( n - 1) 
Racah coefficient has value unity (also part of our phase 
convention) : 

= 1. (B14) 

To complete the proof of Eq. (4. 17) we still must de­
monstrate that the operator pattern assignment (B10) is 
correct. There is, of course, no question that there is 
but a single operator pattern to be determined. Suppose 
we had identified the pattern Simply by the symbol (r 0)' 
Then the t. pattern [11(r 0)] n is still given by Eq. (B9). 
One easily sees that the net effect of this unspeCified 
identification on our previous proof is to yield the fol­
lowing modified results: 

/ (rx] + 11( r~ 
\~y]+t.(p1 
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=: (phase) 

where 

[6(ro)]n-l =: [YIY2 '" Yn-l], 

[6(ro)]n-l = [YIY2 '" Yn-l] + 6 n- 1(p)· 

But the limit Yn -'> - <Xl of the left-hand side of this re­
sult is unambiguously given by the square-bracket coef­
ficient 

In accordance with our previous discussions 8,2 regard­
ing the identification of operator patterns through the 
use of limits, we see that the pattern (r 0) must be identi­
fied as in Eq. (BI0) with a similar identification for (ro)' 

Finally, we must prove Eq. (4.15) to complete the full 
proof of the important relation, Eq. (4.16). This result 
is, however, now easily proved directly by evaluating the 
general Racah invariant as given by Eq. (2. 46) in Ref. 8 
on the labels indicated, noting the pattern identification 
of Eq. (BIO). We omit these details. 

We conclude this appendix by noting two subsidiary 
results. 

Equation (BI4) is a special case of the general result 

unless [m] belongs to the null space of the Wigner 
operator 

j<n\ 
~My 

in which case the Racah coefficient is zero even for 
(r) = (r'). This result follows easily from the product 
rule for two Wigner operators [see Eq. (15) of Ref. 9] 
upon operating on the state 

and using the property 

(BI8) 

The phase of Eq. (Bll) can be obtained in the following 
manner: Since the phase in Eq. (B12) has been demon­
stratedtobe + 1,we may choose 0rp([x];[y]) =0. 
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Furthermore, we see that o( [x]; [x]) = O. Equation 
(BI3b) now becomes a recursion formula for generating 
o( [x]; [y]). The result of iterating this equation is 

n 

o([x];[y]) = 6 (n-i)(xj-Yj)' 
i ~1 

(BI9) 
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The scattering by a spin-dependent spheroidal potential is studied. For this potential the scattering 
amplitude is considerably simple. The simplification is accomplished through the use of "reccurence 
relations" among the spheroidal functions. An iteration procedure is used for solving the infinitely 
coupled integral equations of the radial functions. The convergence of the solutions is proved. 

1. INTRODUCTION 

The importance of spheroidal scattering in classical 
physics and quantum mechanics was pOinted out in two 
previous papers.1 Practically, it is a physical problem 
which one has to deal with in the acoustic and electro­
magnetic scattering2 by circular disks and apertures, 
and in the scattering of slow electrons by diatomic mole­
cules. 3 Physically, it denotes the scattering between a 
particle and the simplest composite system which can be 
formed by two particles with a fixed separation. It also 
denotes the simplest nonspherical scattering. 

In the existing spheroidal scattering theory, one often 
neglects the vector character of the incident electro­
magnetic waves, or the spin of the incident particles. The 
reason for such an approach is the mathematical diffi­
culties inherent to these problems. With the inclusion 
of these features, the wave equation is no longer separ­
able in spheroidal coordinates4 ; and the solutions have to 
be expressed in terms of infinitely coupled integral 
equations. The importance of spheroidal potentials in 
nuclear physics was noticed quite early. Rainwater, 
Granger, and Spence 5 pointed out the necessity for 
introducing such a potential in the determination of 
nuclear energy levels. The spheroidal potential also 
plays a role in the droplet model of elementary particles. 
Without the inclusion of the spin contribution, the 
spheroidal scattering theory only has a very limited 
applicability in particle and nuclear physics. 

In the present paper, the spheroidal scattering by a 
Simple spin dependent potential is discussed. In Sec. 2, 
we discuss the relation between the proposed potential 
and the spin-dependent potential from the relativistic 
Dirac equation, and the spheroidal nuclear potential. In 
Sec. 3, the integral equations for the scattered radial 
wave functions are given. They are infinitely coupled. A 
simplification of these equations is accomplished through 
the study of the 'recurrence relations' for the spheroidal 
functions in Sec 4. The scattering amplitude is ex­
pressed in terms of radial wave functions in Sec. 5. In 
Sec. 6, an iteration procedure is used for solving the 
coupled integral equations of the radial function; and the 
convergence of the solutions is proved. 

2. THE POTENTIAL 

A spin ~ particle with mass m and incident momentum 
k is scattered by a prolate spheroidal potential V(r) 

The potentials V 1 (r) and V 2(r) are short ranged, 
namely 
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for ~ -) 00, (2.2) 

where E is a positive number. The prolate spheroidal 
coordinates of the pOSition vector r are the variables 
~, 71, cp with (1 :s ~ :s 00, - 1 :s 71 :s 1, 0 :s cp :s 211") and d 
the interfocal distance for the prolate spheroidal coor­
dinate system. a is the Pauli spin operator and L the 
orbital angular momentum. The first term in Eq. (2.1) 
denotes the static spheroidal potential, which was used 
by Stier and Fisk3 to describe the scattering of slow 
electrons by diatomic molecules. It has been used 
repeatedly by many other workers. In nuclear physics 
such a potential has been used by Rainwater, Granger, 
and Spence 5 in the determination of nuclear energy 
levels. The second term in Eq. (2.1) denotes the spin­
orbital spheroidal potential. In the limit, when the inter­
focal distance d becomes zero, and ~d~ takes on a finite 
value, the nonspherical nature of the spheroidal potential 
in Eq. (2.1) disappears. The resultant spherical spin­
orbital potential has been widely used to describe the 
interaction of an electron with its orbital angular 
momentum in an atom, and the interaction of a scattered 
nucleon by atomic nuclei. For the electric interaction, 
the spherical spin-orbital potential is a consequence of 
the relativistic Dirac equation and is related to the 
static potential. In nuclear interactions, the spherical 
spin-orbital potential is phenomenologically introduced, 
and its presence still can not be accounted for in terms 
of a completely satisfactory theoretical explanation. 6 
This potential is not of the first order in the velocity 
and is present even in the nonrelativistic approximation. 
The recognition of its existence led to very significant 
advances in the theory of nuclear structure. 

It is interesting to compare the nonspherical potential 
in Eq. (2.1) and the electric potential in the presence of 
spin. The later has the form 

(2.3) 

where p is the momentum operator of an electron and 
the velocity of light is taken as unity. The two potentials 
in Eqs. (2.1) and (2.3) differ from each other but only 
in a specifiC region. For a spheroidal potential V 1 (r), 
the spin-dependent potentials in Eqs. (2. 1) and (2.3) have 
the same singularity behaVior at ~ = 1, and 71 = ± 1 with 
the form 

(2.4) 

They are essentially equivalent in the region ~ > 1 
which is away from singularities. The region, for which 
they are different, is between both singularities. The 
choice of the potential V2 (r) is able to make this dis­
crepancy small. 

A rigorous treatment of the scattering problem with a 
spheroidal potential given in Eq. (2. 3) is, at the present, 
beyond our theoretical capabilities. Because of the 
small discrepancy between Eq. (2.1) and Eq. (2.3), a 
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study of the scattering problem with the potential in 
Eq. (2.1) will give some insight into the scattering with 
potential (2.3). 

The nuclear interaction between two nucleons is 
another interesting problem. The interaction, one often 
thinks, is mediated by a pion exchange. The Yukawa 
potential is associated with such an exchange. It has an 
exponential tail at large distance and an r-1 singularity 
at the origin. The Coulomb potential for a single charged 
particle has a similar singularity behavior. It is well 
known that the Coulomb potential produced by two charg­
ed particles is spheroidal symmetric. Now an interest­
ing consequence occurs, if two nucleons are separated 
by a small distance, which is less than the range of the 
Yukawa potential. For instance, let these nucleons be 
located at coordinates r l ' == (0,0, dj2) and r2' == 
(0,0,- dj2). The combined potential V p(r) may be 
written as 

where g is a strength constant and IJ.- I the range of 
Yukawa potential. This potential is not spherical sym­
metric, but is predominantly spheroidal symmetric. 

The importance of a spheroidal potential in nuclear 
physics is illustrated by other conSiderations. Many 
nuclei have large nuclear quadrupole moments. This 
indicates that the basic shape for these nuclei is not 
spherical, but corresponds to a considerable distortion 
of the whole nucleus into a spheroidal shape. On the 
basis of a single-particle model, each nucleon inside 
these nuclei would move in a spheroidal potential. How­
ever, the difficulties in handling the spheroidal scatter­
ing problem has prevented the full development of the 
above considerations. The basic difficulty is created by 
the presence, even in the nonrelativistic approximation, 
of the spin-orbit term. Firstly, there are not firm 
theoretical criteria that will determine the exact form 
of this term. 6 Secondly,were the spin-orbit interaction 
known exactly, its very nature would prevent mathemati­
cal tractability of the problem. In spite of these diffi­
culties, the importance of the spheroidal potential in 
nuclear physiCS cannot be ignored. The present attempt, 
with its simplifications, may be viewed as a natural 
effort to study spheroidal nuclei. 

3. SCHRODINGER EQUATION 

The SchrOdinger equation for describing a spin! par­
ticle scattered by the spheroidal potential in Eq. (2.1) 
has the form 

- (fi2j2m)V21tt + [VI(r) + a oLV2(r)}1tI == (fi2k2j2m)1tt, 

(3.1) 

where 1tt is a two-component spinor. The incident parti­
cle v.:i~h momentum k moves in the direction DO == kjk, 
specifIed by the polar angle 00 == coS-I110 and azimuthal 
angle CPo. The incident wave can be expressed in terms 
of the spheroidal functions 4 Smn(c, 11) and RgJ (c,~) 

co 00 • 

e ik .. cDsel X ,.) - 2"'" "'" zn - LJ LJ --- Smn(C, 110) 
m=-co n=lml Nmn(c) 

x S (c "')R(I)(c C)eim(<I>-<I>o> I ) 
mn ,", mn ,c:, Xi' (3.2) 
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where 

c == jkd, 

J.~ Smn(c, 11)Smn'(c, 11)d11 == 6nn,Nmn (c), 

COSe = cosO cosOO + sinO sinO o cos(CP - CPo), (3.3) 

Nmn(c) is the normalization constant for the function 
Smn(c, 11), e is the angle between the position vector r 
and momentum vector k. The spinor I X) denotes the 
spin polarization of the initial spin direction. It is well 
known from the general scattering theory that the 
scattered wave with the final spin polarization XI satis­
fies the integral equation 

1ttl+)(r; XI' Xi) == e ikT CDse(XI I Xi) 

_~ 6 Jexp(iklr -r'l) 
21Tti2 h Ir-r'l 

x (XI I V(r')IXh)1tt1+)(r'; Xh' Xi)dr' 

m Jexp(iklr-r'l) 
-21Tti2 Ir-r'l VI(r')(x/lxi) 

x 1tt1+)(r'; XI' x;)dr' 

+~ 6 J/x la.L,exp(iklr-r'i) I \ 
21Tti 2 h "'-!.. fir _ r' I X hi 

x V2(r')1tt1+)(r'; Xh, Xi)dr' 

+i~6 J<x lu.(r'xn') exp(iklr~r'l) Ix;' 
21Tti h fir - r I Y 

(3.4) 

where D' is the unit vector in the normal direction to the 
surface element ds', and S is a surface at infinity. In 
arriving at the final form of Eq. (3. 4), the Green's diver­
gence theorem has been used. The differentiation in the 
third term of Eq. (3. 4) is only with respect to the Green's 
function Ir -r'l-l exp(iklr -r'I). The last term in Eq. 
(3.4) is an integration over the surface at infinity S. On 
account of the short-range nature of the potential V 2(r) 
this term is zero. 

The spheroidal potentials VI (r) and V 2 (r) both have a 
pair of Singularities at ~ == 1,11 == 1 and ~ == 1,11 == -1, 
respectively. The spherical potential has only one singu­
larity which is located at the origin. This is the charac­
teristic difference between these two types of potential. 
Such a difference has prevented the apprOximation of the 
spheroidal potential by any non central form of a spheri­
cal potential, and therefore excluded the application of 
the standard procedure for handling spherical scatter 
problems. 

The Schrodinger equation in Eq. (3.1) is not separable 
in the spheroidal coordinates. Thus the spheroidal phase 
shift analysis method is not directly applicable here. 
An important step in this analysis is the proper handling 
of the pair of singularities of the spheroidal potential. 
This procedure is the only one known capable of handling 
such singularities and will be adopted in the present 
problem. 

The scattered wave 1tt<;>(r; XI' Xi) is expanded in 
terms of prolate spheroidal functions 
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ao ao 
Jti<;)(r; X I' Xi) = 2 :0 

m=-OO 
:0 

n=lml 

The prolate spheroidal expansion of the free-space 
Green's function is written as 

exp(iklr -r'l) = ik ~ ~ _1_ 
41T I r - r'l 21T m=-ao n= Iml N mn(c) 

x RJ.~ (c, ~ <)R~~ (c, L)Sm .. (c, 1/) 

X Smll(c,1/')e im(<1>-<1>'), 

where 

R ~J(c,~JR ~J(c,~» 

=~ R~J(c,~)R~J(c,~'), 

t R ~J (c, ~ ')R ~J(c, ~), 

(3.6) 

(3.7) 

The vector r' has the spheroidal coordinates ~ ',1/', and 
cp'. Equations (3.2), (3. 5), and (3.6) permit us to express 
the integral equation Eq. (3. 4) in the following form: 

( t ) () -im<1>O (1) ( ) I T m" C, ,>;DO; XI' Xi = Smn C,1/o e R m .. C, ~ (XI X~ 

- ic J;JO d~ 'R ~~ (C, ~<)R ~~ (C, ~»U1(~') 
x Tmn(c,~ ';DO; XI' Xi) 

(3.8) 

where 

Wimn(C,~;DO; XII' Xi) 

= ~ (- i) n J 1 d1/ J 21f dcpS (C 1/)e-im<1> 
(21f) 2 -1 0 mil' 

X I; I; ~ Bin' 1 1 
m'=-oO ,,'=lm'l m"=-OO "n=lm"l Nm"n"(c) Nm,_,(c) 

x Lao dfJ1 d1/' (21f dcp'S , ,(c 1/')e im '<1>' 
1 -1 JO m,,' 

X Tm'n'(C,~ ';DO; XII, Xi)U2(~ ') 

XL'iR (1) (C ~<)R (3) (C I: ) 
m"n'" tTl'n", ':, > 

x Sm"n"(C, 1/)S""'n"(C, 1/')e im"(qr<1>'>, 

for j = +, -, O. (3. 9) 

The spin matrices and angular momentum operators 
in Eqs. (3. 9), (3.10), and (3.11) are defined in the usual 
fashion 

(3.10) 
L'± = L~ ± iL;, L'o = L~. 

The integrations in Eq. (3. 9) with respect to the vari­
ables 1/, cp, 1/', and cp' will be discussed in the next section 
and are performed by using the "recurrence relations" 
for the spheroidal functions. 

4. "RECURRENCE RELATIONS" 

The "recurrence relations" for the spheroidal func­
tions have been studied by Marx and Chako. 7 The most 
well-known recurrence relations are those among the 
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three contiguous hypergeometric or confluent hyper­
geometric functions. The differential equations satisfied 
by the spheroidal functions has an irregular point at 
infinity in addition to regular pOints for the values ± 1 
of the respective variables, and is not a hypergeometric 
type. The coefficients in the "recurrence relations" 
for the spheroidal functions can not be reduced to simple 
expressions in the variable and in the parameters, as is 
the case for functions of the hypergeometric type. These 
coefficients involve products of the functions themselves. 
The relations are obtained through a method suggested 
by Whittaker8 in his derivation of the "recurrence rela­
tions" for Mathieu functions, which are also not hyper­
geometric. In that method an integral representation of 
the spheroidal radial functions R ~~ (c,~) in terms of the 
spheroidal angle functions Smn (c, ~) is used 

(4.1) 

The function K m (1/,~) exp(- imcp) satisfies Helmholtz's 
equation, provided that 

(1 - 1/2) (Smn (c, 1/) ~ Km (~, 1/) - Km (~, 1/) ~ Smn(c, 1/~ 
01/ 01/ J 

(4.2) 

takes the same value at both ends of the integration 
limit a and b. The detailed derivation of "recurrence 
relations" might be found in the papers by Marx and 
Chako. 7 We will give a brief discussion of these "re­
currence relations," which are related to the evaluation 
of the integrations in Eq. (3. 9), in the Appendix. 

The angular momentum operators in the spheroidal 
coordinates have the forms 

L±=±ti[ p (1/~_~~)e±i<1>±ie±i<1>~1/~' 
~2-1/2 o~ 01/ P o¢ 

o 
Lo = - i1ia;p' 

where 

p = [(P -1)(1 _1/2)]1/2. 

The "recurrence relations" are expressed as 

(4.3) 

(4.4) 

tiA(i.±) ,R(i)(c l:)e-im<1>=J 1 d'nS (c 1/)L±R~1 n'(c,~) mil," mn ,,=, -1 'I mn' ""... • 

X 8 m±1.n'(c, 71)e-i(m±l)<1>, for i = 1,2,3,4. (4.5) 

The constants quantities A~;,±.)", are determined from 
the asymptotic behaviors of the spheroidal radial 
functions R ~~ (c, ~) along with their relations 

R ~J (c,~) = UR ~J (c,~) + R ~J(c, ~)], (4.6) 

R~J(c,~) = (1/2i)[R~J(c,~) -R~J(c,m. 
One obtains thus 

( 
(m ± 1)1/ () x / 8 m±! n' c,1/ 

(1 - 1/ 2 )1 2 • 

'f(1-1/2)1/2~ Sm±! n,(c,1/~ 
d1/ • ,. 

for n -n' = even, (4.7) 

A <:.t~'>n' = 0, for n - n' = odd. (4.8) 



                                                                                                                                    

1361 Ming Chiang Li: Spin-dependent spheroidal potential 

Equations (4.7) and (4.8) express the fact that the 
constants A~;.± ~ do not depend on the index i, which de­
notes the kind 'of the spheroidal radial function R ~~ (c, ~) 
in Eq. (4. 5). For simplicity we write 

(4.9) 

After tedious but straightforward manipulations, the 
"recurrence relations" in Eq. (4. 5) yield the following 
set of equations: 

X Sm'n' (c, 1/')e im 'q,'L '±R ~>',,,,,(c, ~ ') 

x Sm"n"(c, 1/)Sm"n"(c, 1/')e im"(q,-q,') 
(4.10) 

In obtaining Eq. (4. 10) one also uses the orthogonality 
relations in Eq. (3. 3) of the spheroidal angle functions 
Smn(c, 1]). 

The above integrations appear in Eq. (3. 9) and have 
been performed through the utilization of the "recurrence 
relations." The other integrations in Eq. (3. 9) are simi­
lar to these, with the operators L'± replaced by L'o. The 
evaluation of these integrations is simpler and is ac­
complished by means of the orthogonality relations in 
Eq. (3. 3): 

Jl d1] Jl d1/' .e rr d-+> [2rr dCP'S (c 1])e-im¢S , ,(c 1/')e im ,¢t 
-1 -1 0 'f' -0 mn' m n , 

X L 'OR ~~>"n' (c, ~ ')S m"n" (c, 1])Sm"n" (c, 1/ ')e im" (¢-q,') 

= - (21T)2mno nn,li nn,,0 mm'o mm"N;'n (c)R ~>'n' (c, ~ '). 

(4.11) 

By using the above relations the functions Wimn (c, ~ ; 
DO; Xh' Xi) in Eq. (3. 9) can be written as 

where 

(4.13) 

and 

(4.14) 

The recurrence relations among the associated 
Legendre functions have played an essential role in 
arriving at the simple form of the spherical scattering 
formulation. Due to their complexity, the "recurrence 
relations" among the spheroidal angle functions only 
playa limited role. These differences may be seen as 
follows. Each of the quantities D,t.n, m'n' contain at least 
a Kronecker delta. Then, only one of the two infinite 
sums is present in Eq. (4.12). In the spherical case, 
i.e., c ~ 0, each of the quantities D,t.n. m'n' contains two 
Kronecker deltas. The additional one comes from the 
"recurrence" coefficients A~", ,,', 

C --; 0 
A~n,n'~ 

_2_(n +m)! ~ 
U nn, , 

2n + 1 (n -m)! 

2 (n + m + I)! ~ 

2n + 1 (n - m - I)! 
U nn,· 
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That is to say that in the spherical case the infinite 
sum in Eq. (4.12) is not present and the scattering for­
mulation is greatly simplified. 

5. SCATTERING AMPLITUDE 

The radial functions T m" (c, ~; X I' X i) of the scattering 
wave satisfy the coupled integral equations in Eq. (3. 8). 
For the scattering problem one has to find their asymp­
totic forms and the scattering amplitude. Suppose these 
functions have the following asymptotic forms: 

c~ -7 C() 

Tmn(c,~;no; XI' Xi) ~ 

Smn(c,1/o)e-m¢o(l/cOcos[c~ -!(n + 1)n-](x/ lx;) 

+ (l/c~) expi[c~ -!(n + 1)1T]Km .. (no; XI' Xi)' (5.1) 

Quantities Smn(c, 1/) and Km,,(X/' Xi) are obtained 
through Eq. (3. 8) with the aid of the asymptotic forms 4 

of the spheroidal radial function R~lj(c,~) andR~3,.>(c, ~): 

( c~ -7 C() 
Rml,.>(c,~) ~(I/c~) cos[c~ -t(n + 1)1T], (5.2) 

These constants can be expressed as 

Kmn(no; XI' Xi) 

= -ic r" d~'R~lj(c,~ ')U1 (i; ')Tmn(c,i;';noj XI' Xi) 

+ ic"6"0 (XI I 0) XJJ i3 I; 100 di;'R~l,~,(c, nU2 (i;') 
j h m'-OO n'= Im'l 1 

(5.4) 

The scattering amplitude fk(n, n'j XI' Xi) is related to 
the asymptotic form of the scattered wave 1P1+)(r; XI' Xi)' 

1P~+)(r; XI' Xi)~ eik.r + (l/r)eikrfk(n, no; XI' Xi), 
(5.5) 

where the unit vector n = r/r denotes the direction for 
the particle after scattering. Using Eqs. (3.5), (5. 1), and 
(5. 2) we obtain 

fk(n,nO; XI' Xi) 

2 00 00 

= 1i 2:) 2:) N;,.ln(c)Smn(c, T/)eimq,Kmn(no; XI' Xi)' 
z m= _00 n= Iml (5.6) 

The above expression of the scattering amplitude in­
volves four summations with respect to indices m and n. 
Two of these are explicit. The other two are from the 
expression in Eq. (5. 4) for the quantity Kmn(Xt, Xi)' 
These four summations can be reduced to two by noting 
the following representations for the "recurrence" con­
stants A~n, n' and the normalization constant N mn(c): 

A± Ii = in-n' Jl d1] 12rr dAo.S (c TI)eimq, 
mn,n' m±l,m' 21Th -1 0 't' mn ," 

x L§Sm'n,(C,1])e-im 'q" (5.7) 

mNmn(c)o mm' on .. ' = - 1 J 1 d1/ 12rr drpSmn(c, 1])e im¢ 
2n-n -1 0 

X LgS m'n,(c,1])e-im '¢, (5.8) 

where L~ and L~ are the angular momentum operators 
L in the sphericaJ. coordinates with the polar angle e = 
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COS-1 1) and azimuth angle cp. From Eqs. (5. 7) and (5.8), 
we rewrite quantities Dlnn, m'n' in Eqs. (4. 13) and (4.14) 
as follows: 

Dlnn m'n' = [21TNm'n,(c)]-1 J 1 d1) 1211 d¢ 
, -1 0 

X Sm'n'(c, 1)e im '</lLi Smn(c, 1)e-im </l. (5.9) 

A direct evaluation of the integration with respect to 
angle cp will lead from Eqs. (5. 7), (5. 8), and (5.9) to Eqs. 
(4.7), (3. 3), and (4.13), respectively. The spheroidal 
angle functions satisfy the completeness relation 

00 00 

6 6 [21TNmn(c)]-1 Smn(c, 1)Smn(c, 1)')e im(</l-CP') 
m; -00 n; 1m I = 6(1) -1)')6(CP - CP'). (5.10) 

Substituting Eqs. (5.4), (5.5), (5. 9), and (5.10) into Eq. 
(5.7) one arrives at 

00 00 

fk(n,nO; XI' Xi) = - d"6 6 N,;;;, 
m;-oO n; Iml 

X 6J oo 
d~Ri1j(c'~)(XI I U1(~) + U2(~)C7· Lsi Xh) 

h 1 

X Smn(c,1)eimcpTmn(c,~;no; Xh' Xi)' (5.11) 

Comparing with Eq. (5. 6) the expression in Eq. (5. 11) 
for the scattering amplitude fk(n;nO; XI' Xi) is consider­
ably simplified. 

6. RADIAL FUNCTION 
A further investigation of the scattering amplitude as 

expressed in Eq. (5.11) leads us to a study of the radial 
function T mn(c, ~; no; X h' Xi) and its integral equation in 
Eq. (3. 8). A formal representation for the function 
Tmn (c,~;no; Xh' Xi) can be obtained through Eq. (3. 8) by 
a direct iteration procedure resulting in the usual Born 
series. The convergence problem, for a static potential, 
of Born expansion has been studied by a number of 
authors. 9 To insure proper convergence they have im­
posed a condition on potential V(r) 

I V(r) I ~ Mr-2 , (6.1) 

where M is a finite constant. The above potential has 
only one singularity which is located at the origin. The 
spheroidal potential in Eq. (2.1) has a pair of singulari­
ties, which are located at the foci of the spheroidal 
coordinates. This discrepancy clouds the formal re­
presentation for the spheroidal radial function. In this 
section the problem will be clarified. 

The Born series has the form 

Tmn(c,~;no; XI' Xi) =Ri1n)(C,~)Smn(C, 1)0)e-
im

</l°6/i 
00 00 00 00 Joo 

+"6 6 "6 6 f1°O d~l ... ~_ P 1 d~ j 
j ml;-oo nl; Imll Xl mr 00 nr Imjl 

X Kmn m n (c;I;,l;l; XI' Xl) ••• 
, 1 1 

XKm. n. m.n.(C;~j-1J~j;Xj-1,Xi) 
r 1 r 1' J J 

x R!:.~ .(C, ~ j)Sm.n .(C, 1)O)e -imj</lo, 
J J J J 

where 

Kmlnl,mknk(c;~l'~k; Xl' Xk) 

= - icR (1) (c ~ Ik)R (3) (C ~ lk) mini ,< mkn k , > 

X [U1(l;k)6m m 6n nOx ( 
1 k 1 k l,~ 

+ U2(~k)(XIIC7· Dm n m n I xk)l· 
1 I' k k 

(6.2) 

(6.3) 

The symbol ~ ~k(;k) denotes the smaller (larger) of the 
variables ~I and ~ k' To prove the convergence of the 
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Born series in Eq. (6. 2), at first, one has to verify the 
existence of each term in the series. This is accom­
plished through the study of each iterated kernel 
Kmlnl,mknk(c;~I'~k; Xl, Xk)' In Eq.(6.3) the spheroidal 

radial function R iV( c, ~) is regular at ~ = 1 and has the 
asymptotic form 

RiV(c,~) ~ O[(~2 -1)m/21, (6.4) 

RiV(c,~) ~ (1/c~) cos[c~ -~(n + 1)1Tl. (6.5) 

The function R i3j (c, ~) has a singularity at ~ = 1. 

Ri3j(c, 1;) ~ O[(~2 - 1tm/2] (6.6) 

and the symptotic form 

Ri3j(c,~) ~ (1/c~) expi[c~ -Hn + 1)1Tl. (6.7) 

In region between ~ = 1 to I; = co, these two functions 
R$,.V(c,~) andR~~(c,~) are regular. The coefficient 
D mn, m'n' in Eq. (6. 3) depends on the spheroidal angle 
function Smn(c, 1) through Eq. (5. 9). For larger order of 
n, the later function can be approximately expressed as 

(6.8) 

The associated Legendre function P ::'(1) satisfies the 
following recurrence relations 

L!;P::'(1)e-im</l = ti(n + m)(n -m + 1)p;:,-1(1)e-i (m-1l</l, 

LsP::, (1)e- im </l = tip::,+1(1)e-i (m+1)</l, 

L~P::I(1)e-im</l = - mtiP:(1)e im </l. 

(6.9) 

The spheroidal angle function Smn(c,1) is usually ex­
panded as an infinite sum of the associated Legendre 
function 4 

00, 

Smn(c,1) = 6 d;.'lft(c)pmlml + r(ij), 
1';0,1 

(6.10) 

where the prime over the summation Sign indicates that 
the summation is only over even (odd) values of r when 
n - m is even (odd). As r approaches infinity the ratio 
d;,n/d;'_~ goes to zero as - c 2/(4r 2). It implies the ab­
solute convergence of the expansion in Eq. (6. 10) for all 
finite 1). The orthogonality relation among the associ­
ated Legendre functions yields the coefficient d~n(c) 

dmn(c) = 21ml + 2r + 1 (Iml +r -m)! 
l' 2 (1m I + r + m)! 

f 1 Smn(c, 1)Pr"ml+1' (1)d1). (6.11) 
-1 

Taking into account Eqs. (6. 8), (6. 9), (6.10), and (6.11), 
one arrives at the approximate expressions for coeffi­
cients D mn,m'n' at large orders of n': 

Dinn,m'n' ~ ti (n' + m ' + 1)(n' - m')6 m,m'+ld;:t?'lmb 

D~n,m'n,'-1i6m,m'-ld;:t?!lml , (6.12) 

D9nn,m'n' ~ -mti6m,m,6 nn" for n'» c. 

The existence of the following series can be under­
stood as follows: 

The I; j dependence of the kernel in Eq. (6.13) is through 
the spheroidal radial functions R ~)n .(c, ~ j) and 

J J 
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R ~)n. (c, ~), and the short range potentials U 1 (~j) and 
} } 

U2(~). Then Eqs. (6. 4), (6. 5), (6. 6), (6. 7), (6.12), and 
(2. 2) guarantee the absolute and uniform convergence 
of the improper integral with respect to ~ j" The finite 
sum L) x. does not create a problem. The main dependence 

:J 
on the indices ml..-1 ' n j-1' m j , and n j in the kernel is through 
the coefficients D m. n. m.n .• The asymptotic behavior 

r1 rl' } } 
of the infinite series with respect to the indices mj and 
nj in Eq. (6.13). We shall denote the uniform bound of the 
series in Eq. (6.13) by B(e, V), which is a monotonic 
function of the spheroidal parameter e and the strength 
Vof the potential V(r) in Eq. (2.1). Then the Born series 
is bounded by the series 

A[l + L) Bj (e, V)], 
j 

where A is the least upper bound 

A = l.u.b. [R~11(e,~)smn(e, 110)e-
im

<t>O]. 

(6.14) 

For B(e, V) < 1, the Born series is absolutely and 
uniformly convergent. 

APPENDIX 

To prove "recurrence relations" in Eq. (4. 5), we first 
choose function Km( 11, ~) exp( - im cp) in Eq. (4. 2) as 
R~~,(e,~)Smn,(e,11) exp(-imcp),which obviously satisfies 
Helmholtz's equation. The angular momentum opera­
tors L± commute with the Laplace operator. This allows 
us to chooseKm(71,~) exp(-imcp) as L'R~~l n,(e,~) 
Sm±l n,(e,~) exp[- i(m ± l)cp]. From Eq. (4.1) or from 
Eq. (5.1.5) of the book by Flammer, 4 we obtain 

R~:)(e, ~)e-im<t> 

= f1 d11S mn(e, 11)L±R~n1 n,(e, ~)Sm±l,n,(e, 11)e-i (m±1)<t>, 
~ , ~1) 

where R<fn,;)(e,~)e-im<t> is a spheroidal radial function. IIi 
Eq. (Al) The integration limits are taken as - 1 and 1, for 
which the condition imposed by E9-. (4.2) is satisfied. 
The spheroidal radial function R ~~ (c, ~) can be expres­
sed in terms of two independent spheroidal radial func­
tions 

ll(i,±)(C t) = a(i,±) R (3)(e ~) + b(i,±),R (4)(e~) (A2) 
mn'~ mn.n'mn, mn,n mn , , 

where constants aJ.~h;{,' and b~'h;~' will be determined from 
Eq. (AI) through the asymptotic forms of spheroidal 
functions 

R ~~ (c,~) ~ (l/e~) cos[ e~ - t(n + 1)1T], 

( ~-7CO 
RJ~(e,~) ----- (l/e~) sin[e~ - t(n + 1)1T], 

R~~,(4)(e,~) ~ -7co. (l/c~) exp±i[e~ -t(n + 1)1T]. (A3) 

For the index i = 3, the asymptotic limit of Eq. (Al) 
has the form 

{a~n±J,(l/c~) expi[e~ - t(n + 1)1T] 

+ b~~:~, (1/ e~) exp- i[ e~ - t(n + 1) 1T ]}e-im<t> 

= {(l/e~) expi[e~ -t(n + 1)1T]} 

x l~ d71Smn(e, 11)L~) Sm±l,n,(e, 11)e- i (m±1)<t>, (A4) 

where 

L~±) = ± Jie±i<t> (- (1 - 112)1/2 ~ ± i1) ~ ). (A5) 
071 (1 - 112)1/2 ocp 

are the operators in Eq. (5. 8). From Eq. (A4) we obtain 
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a(3,±), = e;(n-n'h/2JiJ1 d1)S (e 1)(m ± 1)1) S ,(e 1) 
mn,n -1 mil' (1 _ 1)2) 1/2 m ±l,n , 

'f (1 _1)2)1/2 ~ S 1 ,(e 11») d1) m ± ,n , , 

b(3,±) = O. 
mn,n' 

(A6) 

The spheroidal angle function Smn(e,1) is even or odd. 

(A7) 

Then we have 

a~3,;:~, = 0, for n - n ' = odd. (A8) 

By using the above method, one obtains 

(A9) 

The constants a~n:J" b~n:~" and JiA±"'an in Eq. (4. 9) 
are the same. From Eqs. (A2), (A 7), and (A9) , we have 

ll~n±)(e,~) = JiA±"'n,n,R~3,.>(e,~), 

1l ~,;±)(e, ~) = JiA±mn, n,R~4j (e, ~). 

For the index i = 1, Eq. (Al) can be written as 

1l (1,±) = l.e im <t> J 1 S (e 71)L± mn 2 -1 mn , 

(AI0) 

X [R~3A,Il' (e,~) + R~4A,n' (e, ~)]Sm±l,n,(e, 1)e-i (m±ll<t> 

= 1.[:R (3,±) + 11 (4,±)] = JiA± R (1) (e t) 
2 mn mn mn,n' mn ,". (All) 

In arriving at Eq. (All), one uses Eqs. (4. 6), (Al), and 
(AI0). Now we have proved the "recurrence relations" 
in Eq. (4. 5) and expressions in Eqs. (4. 7) and (4.8). 
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Propagation of the mean waves in a simple cubic crystal with small, random mass defects is studied 
using the results of a previous paper. The dispersion equations for two- and three-dimensional 
crystals are analyzed. For uncorrelated mass defects, the effective propagation constants are obtained 
explicitly in the limits of low frequency and near cut-off frequency. The mean reflection and 
transmission coefficients are determined for a plane wave incident in a crystal formed by joining a 
semi-infinite perfect crystal to a semi-infinite defective crystal or by connecting two semi-infmite 
perfect crystals to a finite imperfect crystal. We also construct the mean Green's functions for an 
infinite crystal lattice containing defective masses distributed throughout it or confined to a half­
space. 

INTRODUCTION 

This is a continuation of the first part of our study 
on wave propagation in a random lattice,l which we 
shall refer to as Paper I. In Sec. 1 of this paper we 
attempt to solve the dispersion equations for the mean 
waves in two and three dimensions. For uncorrelated 
mass defects, asymptotic results are obtained at low 
frequency and near the cut-off frequency. Here we need 
Green's functions for a perfect lattice in higher dimen­
sions. For lattice vibration problems, the approximate 
evaluation of Green's functions can be found in an ex­
cellent book by Maradudin et al.2 An approximate evalu­
ation of Green 1 s functions corresponding to a lattice 
wave in two and three dimensions is carried out in the 
Appendix. These results were not given in Ref. 2. 

The scattering problem for lattice waves by point de­
fects was first analyzed by Lifshitz,3.4 and by Koster 5 

in a different physical context. This theory has been 
further developed by Klein,6 Krumhans,7 and Callaway. 8 
However, as mentioned in I, Rubin 9 seems to be the first 
to have investigated the transmission of a lattice wave 
in a one-dimensional lattice with randomly distributed 
mass defects (for related references, see I). He defined 
the transmission coefficient T in terms of the mean 
value of the logarithm of the amplitude of the trans­
mitted wave. In contrast, we shall define the reflection 
coefficient r and the transmission coefficient T based on 
the mean (or coherent) waves. In our definition, the co­
efficients r and T may be complex. One could have de­
fined 1 r 12 and 1 T 1 2 to be the reflection and the trans­
mission coefficients respectively, as done by some 
authors, then they become real quantities. Physically 
the constants r and T can be interpreted as the effective 
parameters, in the sense of Yvon10 and Kirkwoodll who 
determined the electromagnetic properties of a polariz­
able medium based upon the average field. That is, if 
the random lattice is replaced by a deterministic one 
whose propagation property is characterized by the 
mean wave, the reflection and transmission coefficients 
would be given by what we have defined. The advantage 
of our approach lies in the simplification of the mathe­
matical analysis. This makes it possible to apply the 
present method to different boundary problems associ­
ated with nonsimple lattices, which would, otherWise, be 
difficult to treat analytically. 

In Sec. 2, we formulate the problem of reflection and 
transmission of a plane incident wave. It is shown in 
Sec. 3 that the higher dimensional problems are re­
ducible to that in one dimension if the correlation func­
tion is homogeneous and isotropic. Three special cases 
are solved in the following section. They correspond to 
the problems of reflection and transmission by a semi-
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infinite imperfect lattice with uncorrelated mass defects 
in one and three dimensions, and exponentially correlated 
mass defects in one dimension. A similar problem is 
solved when the plane wave is incident from the imper­
fect crystal. In Sec. 6 we determine the reflection and 
transmission coefficients in the presence of a finite im­
perfect crystal for various cases. For arbitary correla­
tion functions the problems of reflection and trans­
mission by a semi -infinite imperfect crystal can be 
solved by adapting the Wiener-Hopf method to the case 
of a discrete variable. This is done in Sec. 7. In the last 
two sections we construct the mean Green's functions 
for an infinite random lattice and a semi-infinite ran­
dom lattice joining a perfect one. 

In an earlier paper, 12 we treated the problem of re­
flection and transmission by slabs of continuous random 
media. By an appropriate limiting process from a lat­
tice to a continuum, our current results can be shown to 
yield the corresponding results obtained previously in 
Ref. 12. 

1. PROPAGATION CONSTANT FOR A TWO- OR 
THREE-DIMENSIONAL CRYSTAL 

Let us consider a Simple cubic crystal in three 
dimenSions with random mass defects. It is convenient 
to set q = n = (nv n2' n3), in (1.1.14) and (1.1.15) where 
n i , i = 1,2,3, are integers. Then the position of the 
lattice site n is given by x(n} = d(n1e2 + n2e2 + n3e3). 
Here d denotes the lattice spaCing, and e i are mutually 
orthogonal unit vectors. For nearest-neighbor inter­
action with spring constants a J' cf> takes the form 

cp(n,n')=-a j ifnj=nj±1, n;=n;fori>"j, 

= 0 otherwise. 

Then (1.1.14) and (1.1.15) become 

3 

Lo =- ~ aja} -mw 2 , 
j=l 

V = - Emw 2J.1.(n}. 

Here fl.} is the second central difference operator 
with respect to nj' In view of (1.1), (I. 2. 2) becomes 

3 
¢(k) = 2 L) (a j coski - 1). 

1=1 

The Green's function of Lo defined by (1.4. 2) is 
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(1.1) 

(1.2) 

(1. 3) 

(1.4) 
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given by the principal value integral 

-1 J (211 J G(n,n',w) = lim -( )3 Jo 
£ .... 0+ 21T 

eie.<n-n') 

(1.5) 

the choice of the upper or the lower Sign of i£ is deter­
mined by an outgoing wave condition and we is the cut­
off frequency defined by 

(
1 3 )1/2 

We = 2 - ~ a j • 
m j=1 

(1. 6) 

For uncorrelated defects, the dispersion equation 
(1. 3. 3) yields, when (1. 4) is used, 

3 

w2m + £2w 4m 2 (J.1.2) g(w)-2 ~ (ajcoskjd-1) =0, 

j= 1 (1. 7) 

where g(w) = G(O, 0, w). 

The solution of (1. 7) for k corresponding to (1.3.6), 
is found to be 

k(w,£2) =koko(w) [1 + £2 (2d ;~. ajkOj SinkOjdy1 

x w 4 (J.1.2)g(w) + 0(£4)J. (1.8) 

According to (I. 3. 8), the vibration frequency w, which 
is shifted from Wo is given by 

For the two-dimensional case, the expression for g(w) 
is given by (1. 5) with n = n' = 0 and the triple integral 
replaced by a double integral. It is shown in the Appen­
dix that g can be expressed in terms of the hypergeo­
metric function F as follows: 

( 
1)2 1 

g(w) = -2 (2 2)1/2 F(~,~; l;z), rr mw We - W 

in which 

z(w) = 4./a 1a 2 /mw (w~ - w 2)-1/2. 

It is clear that, when w is small or near we' z is 
large. 

(1.10) 

(1.11) 

Therefore, we can expand F for large argument z 
either for low frequency or near cut-off frequency. The 
leading term in this expansion reads (see p. 560 of Ref. 2) 

F(~,~;l;z) = ± (i/rr)z-1/2[(lnz + i1T) + 4 In 2] 

± (i/.../W)Z-1/2 + 0(z-3/2 lnz). (1.12) 

When (1.10) and (1.12) are used in (1. 8), we see that 
the upper branch of F must be chosen in order to have 
positive attenuation. 

Then (1.8) yields 

k(w, (2) ~ koko(w) [1 - £2(J.1. 2) (2~ )3 

Similarly, when I Wo I is small or near we' (1. 9) 
becomes 

w(k, (2) ~ ± wo(k) [1 ± £2(~)3 (/J.2) w5(k)m2 Zl/2 
21T 2./a 1a 2 
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x (W O)[1T - i(lnz(wo) + 4 In2 + .../W)]]. (1.14) 

From (1.13) it is seen that Re{k} < ko and Im{k} > O. 
Therefore, the phase speed increases and the mean 
wave attenuates. Both of these effects, of 0(w 7 / 2 lnw), 
are negligible at low frequency, while they are notice­
able, ofO[(we - w)/ln(w c - w)1/4], when w is near we' 

In three dimensions we assume a 2 = a 3 for com­
putational convenience. Then, as shown in the Appendix, 
g(w) can be represented by a contour integral along a 
unit semicircle C with a hypergeometric function as 
its integrand: 

g(w) =(2~Y(a1~J1/2 L ([~2 + 2(15 1 -1)~ + 1] 

x [~2 + 2(15 2 - 1)~ + 1 ]}1/2 

x F[~,~, 1; W(~)]d~. (1.15) 

Here we have set 

15 1 = mw 2 /2a 1 , 

15 2 = [m (w~ - w 2)/2a 2]' 

and 

(1.16) 

(1.17) 

( 
~(£2 + 1) )1/2 

W(~) = [~2 + 2(15 1 -1)~ + 1][~2 + 2(15 2 -1)~ + 1] . 

(1.18) 
At low frequency 15 1 is small and near the cut-off fre­

quency. When 15 1 is small, the main contribution to the 
integral (1.15) comes from the branch integrals along 
the line segment connecting the branch points ~ 1 and ~ 2' 
which are the roots of the quadratic equation ~ 2 + 2(01 
- 1)~ + 1 = O. This is so because, along these paths, 
I wi is uniformly large. Therefore, we can use the 
asymptotic formula (1. 12) to evaluate those integrals 
approximately. When these results are used in (1. 15), 
it yields (for details, see the Appendix) 

g(w)~- - _2_ (0 )1/4 (41n2-lno1 i (1)6( ° )1/2 ~ 
4 1T a 1a 2 1 

(11/2 (11/2 ~ 
+.../W + irr) Jo cos 1/ 2 lJdlJ + Jo COS1/ 2 1J In seclJd.IJJ' 

(1.19) 

By the symmetry of 01 and 02 in (1.15), the expression 
for g(w) as 02 ~ 0 is given by (1.19) with 01 and 02 in­
terchanged. When this result and (1.19) are inserted 
respectively in (1. 8) and (1. 9), we obtain 

k(w, E) ~ koko(w) [1 + i£2(1/1T)6 (8d Ji alkOl sinkozd)-l 

x w 4m 2 (a:~2 y/2 (0 k)1/4~4 In2 -lno k +.../W + i1T) 

X J01l COS 1 / 2IJdlJ+ Jo"/2cos 1 / 21JIn SeClJdlJ]} (1.20) 

(1.13) where j ::: 2, k = 1 when w ~ we. The corresponding 
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result for the frequency shift (1.9) reads 

w(k, e:) ~ ± wo(k) [1 - ie:2(1/1T)6(J.L2)w~(k)m 

x (OJ(WO))1/2[0 (W )]1/4 
a 1a 2 "0 

x ~ [4 In2 - lno ,,(wo) + .[i + i1T] J~/2 COS1/20dO 

+ Jo"/2 coS1/20 In secodofJ. (1.21) 

Here, as above,j = 2, k = 1 for Wo R! 0 and j = 1, k = 
2 for Wo R! we' Separation of the real and the imaginary 
parts of (1.20) and (1.21) yields 

Re{k(w,e:2)}~ko(W)[1- e: 2(1/1T)5(8d l~ alkoL sinkOldrl 

(1.22) 

Im{k(w, e: 2 )} ~ e:2ko(W)(1/1T)6(8dl~ alkoL sinkold fW4m 2 

x (~\1/2(0~1/4 f(4 In2 -lno" + fi)Jo" COS1/20dO 
ala;) L 

+ folf 

cos 1 / 2 0 In secOdO], (1.23) 

Re{w(k, e:)}~ ± wo(k) [1 + e:2(1/1T)5(J.L2)wij(k)m 

(
0 (w »)1/2 If /2 J x _J_O_ [0 (w )]1/4 r COSI/2(JdO a

1
a

2 
"0 Jo , (1. 24) 

Formulas (1. 22) and (1. 23) provide the effective phase 
speed and the attenuation coefficient, and (1.24) and 
(1.25) gives the frequency shift and the decay rate, res­
pectively. The essential features resemble those of the 
two-dimensional problem, that is, the mean wave attenu­
ates and its phase speed increases due to the scattering 
by the uncorrelated mass defects. It is interesting to 
note that, in two and three dimensions the uncorrected 
mass defects introduce a change in the phase speed and 
attenuation of the mean wave. However, in one­
dimension, the same mass defects yield, to order e: 2 , 

attenuation only. 

2. FORMULATION OF REFLECTION AND 
TRANSMISSION PROBLEMS 

We now consider the reflection and transmission of a 
plane wave by a slab of imperfect crystal of finite thick­
ness, or by a semi -infinite imperfect crystal in r dimen­
sions,r = 1,2,3. For the finite imperfect crystal, the 
"imperfect" lattice points are contained in the slab, 0 ~ 
n 1 ~ N, where n 1 denotes the first component of n so that 
n = (nv n T). As in the previous section, we confine our­
selves to simple cubic crystals. Then the operators Lo 
and V are given by (1. 2) and (1. 3) with J.L(n) = 0 if n 1 < 
o or n 1 > N. From Eq. (1. 9) in I, a scalar mean wave 
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(u(n» satisfies the equation 

C~ aJ~J + mw2) (u(n» + e: 2w4m 2 n~ 
x G(n, n' , w )R(n, n')(u(n'» = 0, Inl 2:: 0, (2.1) 

where G is the Green's function of Lo defined by (1.16) 
and R is the two point correlation function of J.L 

R(n,n') = (J.L(n)J.L (n'», 0 ~ nl ~ Nand 0 ~ n1 ~ N, 

= 0, otherwise. (2.2) 

Let eiko'Ddbe a plane incident wave from the left semi­
infinite lattice, nl < O. Then we can write the mean 
fields for n 1 ~ 0 and n 1 2:: N, respectively, as 

(u(n» = eill: o•
nd 

+ (uR(n» , nl ~ 0 (2.3) 
and 

(u(n» = (uT(n» , n l 2::N, (2.4) 

where (u R) and (u T ) are the reflected and the trans­
mitted waves which satisfy the outgoing conditions in 
their respective domains of definition. Our problem is 
to determine the mean fields (u R) and (u T ) from (6.1). 
For a semi-infinite imperfect crystal,N = 00, the trans­
mitted wave defined by (2.4) is replaced by 

(2.5) 

3. REDUCTION TO A ONE-DIMENSIONAL PROBLEM 

We will show that the problem posed is reducible to a 
one-dimensional problem. Splitting the wave vector ko 
into the component kOI along the one or the longitudinal 
direction and kOT transverse to this direction, we can 

• " ill: - n d ik ·.n d wrIte the InCIdent plane wave as e 0 = e 01 1 

ill: .nd . 
e oT ,where ko = kOI + k OT ' Let us seek a solutlOn 
of the form 

ik 'nd 
(u(n» = v(n 1)e oT • 

Inserting (3.1) into (2.1) yields, with n = I nIl, 

(3.1) 

w4 m 2 N ,..... 
(~2 +/32)v(n) + e: 2 - a - L) GR(ln-n'l,koT,w)v(n'), 

1 n'=O (3.2) 
where 

/3 = (l/~){mw2 + 2[a 2 (cosk0 2d - 1) 

+a 3 (cosk0 3d-1)]}1/2 (3.3) 

and 6R is the transverse discrete Fourier transform of 
GR, defined by 

GR(ln-n'l,koT,w) = L) G(n,n',w)R(n,n') 
n'T 

X 
ikOT ' (n'-n) 

e • (3.4) 

Due to the invariance of G and R under lattice trans­
lations, GR is independent of nT• For the one-dimen­
sion problem, we must set /3 = ko = Ikoll ,6k = GR, 
and (u) = v. When (2.1) is used in (2.3) and (2.4), we 
find that 

(3.5) 

(3.6) 

where rand T are independent of the transverse vari-
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able n T because the reduced equation (3.2) is one-di­
mensional. r and T, which may be complex valued, are 
defined to be the reflection and transmission coeffici­
ents for the mean wave. For a semi-infinite imperfect 
crystal, in view of (2.5), Eq. (3. 6) is replaced by 

v(n) outgoing, n> O. (3.7) 

In this case, as we shall see, there may be more than 
one transmitted wave. Then we define the coefficient of 
each attenuated plane wave to be a transmission co­
efficient for that particular transmitted wave. To sim­
plify the analysis, we rewrite Eq. (3. 2) as 

4 2 N 
(~2 + /3 2)v(n) + £2 ~ L) GR(ln - n' I, 

Cl!1 n'=O 

kOT,w)v(n') = 0, 1:::; n:::; N -1 (3.8) 

(~2 + /3 2)v(n) = 0, n :::; - 1 or n ~ N + 1 (3.9) 

kOT' w)v(n') = 0, (3.10) 
4 2 N 

(~2 + /3 2 )v(N) + £2 ~ L) GR( IN - n' I, 
Cl!1 n'=O 

kOT,w)v(n') = O. (3.11) 
ik nd 

We note that v(n) = e 0 + O( £2) for all n. There-
fore, if we replace v(n') in (3.10) and (3.11) by e ikon'd, 
these equations are still valid up to 0(£2). That is, 
correct to O( £2) 

'k 'd 
kOT,w)e'vn =0. (3.12) 

4 2 N 
(~ + /3 2 )v(N) + £2 ~ L) OR( IN - n' I, 

Cl!1 n'=O 

(3.13) 

However, we should not use such a replacement in 
(3.8) because this procedure will give rise to an un­
physical result-the growth of the mean wave as N be­
comes large. Evaluating (3.5) at n = 0, (3. 6) at n = N, 
and noting (3.12), (3.13), we obtain a set of boundary 
conditions at the interfaces 

v(O)=I+r, 

v(l) = b1 + b 2 r, 
and 

v(N) = T, 

v(N-l) =b3 +b2T, 
where 

'k d 4 2 N 
b 1 =(2-/32- e-'o )_£2~ L) illl(ln' I , 

Cl!1 n'=O 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
ik d 

b2 =(2-/32- e 0), (3.19) 

w4 m 2 N ........... 
b 3 =-£2-",- L) GR(IN-n'l,koT w) 

""1 n'=O ' 
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Since (3.5), (3. 6) automatically satisfy (3.9), our task 
is to solve Eq. (3. 8) subject to the set of conditions 
(3.14)-(3.17). In the process, when N = 00, the unknown 
coefficients rand T will be determined. The conditions 
(3.16) and (3.17) are replaced by an outgoing condition. 

4. SPECIAL CASES FOR A SEMI-INFINITE 
IMPERFECT CRYSTAL 

Case A: Uncorrelated mass defects in one-dimension 

In one dimension, (3. 8) becomes 

00 

(CI!~2 + mw 2)v(n) + £2w 4m 2 L) 
n'=O 

xG(ln-n'l,w)R(ln-n'i)v(n') =0, n>O (4.1) 

where the Green's function G was defined by (I. 4. 5). 
For uncorrelated mass defects, we have R( I n I) = 0 for 
n'" 0, R(O) = (,.,.Z). Then (4.1) reduces to 

(g2)w 4 m 2 
(CI!~2 + mw 2)v(n) - £2 2iCl! sinkod v(n) = 0, 

n> O. 
(4.2) 

The outgoing solution of (4.2) is 

v(n) = Te iknd , n> O. (4.3) 

Here k(w, £2) is a solution of the dispersion equation 
(1.4.15) with the real and the imaginary parts given by 
(1.4.16) and (I. 4.17). Substituting (4.3) into Eqs. (3.14) 
and (3.15) yields a pair of equations for T and r. Their 
solutions are 

b1 - e ikd . (,.,.2) 1 
r = - .kd = - t£2 ---------

b2 - e 8 [(wc IW )2 - 1)]1/2 

X (
Wc IW)2 - 2 + 3i) + 0(£4). (4.5) 

(wcIW)2 - 1 

Case B: Uncorrelated mass defects in three-dimensions 

In this case, the Green's function is given by (1. 5) and 
the correlation function R is given by R( I n I) = 0 if I n I 
'" 0 andR(O) =(,.,.2). When these are used in (3.4),we 
find after Simplification, that 

GR(O,kOT ' w) = g(w), 

GR(lnl ,kOT'w) = 0, if n '" O. 

(4.6) 

(4.7) 

Here we have set Cl!2 = Cl!3 and the expression for g(w) 
is given by (1.15). In view of (4.6) and (4.7), Eq. (4. 8) 
becomes 

w4 m 2 
(~2 + /3 2)v(n) + £2 --(,.,. Z) g(w)v(n) = 0 

Cl!1 ' 
n>O. (4.8) 

Let ~ = k 1 be a solution of the equation 
4 2 

2 cos~d + (/32 - 2) + £2 ~(,.,.2)g(w) = 0, (4.9) 
Cl!1 



                                                                                                                                    

1368 p, L. Chow: Wave propagation in a random lattice, II 

so that 0 < Re{k1} < 1T/d and Im{k 1} > O. Then the out­
going solution of (4.9) takes the form 

) 
ik nd 

v(n = Te 1 , n> O. (4.10) 

It is clear that the transmission and reflection co­
efficients T and r can be obtained from (4.4) and (4.5) 
in their unexpanded forms by changing k to k1 • That is, 

where use has been made of Eqs. (4.18), (3.19), and (4.9). 
The definition of (3 is given by (3.3). At low-frequency 
and near cut-off frequency, asymptotic forms for g(w) are 
given by (1.19). 

Case C: Exponential correlation in one-dimension 

To be explicit, we shall treat the one-dimensional case 
only. Our reduction procedure discussed in Sec. 3 allows 
the subsequent results to be extended to that in higher 
dimensions. 

Let the correlation function R be given by (I. 4. 21). 
Then the one-dimensional version of (3.4) reads 

eiKln-n'ld 
GR(ln-n'l,w) = (/J.2) 2' 'nk d' (4.13) 

Z SI 0 

where 

K = (ko + ia-1 ). 

Substituting (4.14) into (3.8) yields 

(u2)w 4 m 2 co 
(~2 + w2/a)v(n) + ie2 , ~ 

2a slnkod n'=O 

(4.14) 

X e iK1n - n' Id v(n') = 0, n> O. (4.15) 

k 3(w, e2 ) = (ko + i/a) 
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If we define {3~ to be 

(3~ = 2(1 - cosKd), (4.16) 

the following identity holds 

(~2 + {3~)eiKIII-II'ld = 2ic\n' sinyd, (4.17) 

where onn' 'is the Kronecker delta symbol. Now, apply­
ing the second order difference operator (~2 + (32) to 
(4. 16),one obtains a fourth order difference equation 

w 4 m 2 
(~2 + (32)(~2 + w2m/a)v(n) - e2(,,2) --e ... a 

sinKd x 'nk d v(n) = 0, n> O. (4.18) 
SI 0 

Its general solution can be written as 

4 
~ ik lid 

v(n) = ~1 Tje 'j , 
J-

n> O. (4.19) 

For arbitrary constants Tj' (3.19) cannot satisfy the 
original second order equation (4.16) where only two 
arbitrary constants are involved. The wavenumbers 
kj' j = 1,2,3,4, are the perturbed roots, about ~ = ± ko 
and ~ = ± K, of the equation 

w 4 m 2 
(co~d - coskod)(co~d - cosKd) - e2(/J. 2) -­a 

sinKd 
x 'nk d = O. (4.20) 

SI 0 

Two of these roots, say kl and k3' have a positive 
imaginary part. They are found to be 

k l (w, e2) = ko + 2e2(/J.2)(:; _ 1)-1 

sin2kod(1 - coshd/a) + 2i{sinhd/a - cos2kod) 
x~--~~~--~----------~----~~~ 

d(cos 2kod(coshd/a - 1)2 + sin2kod sinh2d/a] 

(4.21) 

~(W~) ~ -1 (sinkod coshd/a - i coskod) - 4e2(/J. 2) - - 1 sink d ___ "-----""--_---C. ____ "-'-__ 

w2 
0 d(sinkod cosh2d/a + cos2kod sinhd/a) 

sinkod coskod(1 - coshd/a) + i sinhd/a(cosha/d - cos2 kod) 
x + O(e 4 ). (4.22) 

[cos2kod(coshd/a - 1)2 + sin2kod sinh2 d/a1 

The constants T 2 and T 4 must be set equal to zero for 
v(n) shown by (4.19) to be an outgoing solution. Then we 
insert (4.19), with r 2 = r 4 = 0, into (4.16) and invoke 
(4.20) to obtain 

Tl T3 
1 _ ei(k

1 
-K)d + 1 _ ei(k3-K)d = O. 

(4.23) 

This additional condition adjointedto (3. 14) and(3.15) 
makes it possible to determine T l' T 3 and r uniquely. 
The results are 

(4.24) 

J, Math, Phys,. Vol. 14. No, 10, October 1973 

r = (1 - n)T l -1, 

where 
1 - e iU,3- K)d 

U = iU, -K)d' 
1 - e 1 

(4.25) 

(4.26) 

(4.27) 

In terms of these constants, the solution (4.19) be-
comes 

ik nd ik nd 
v(n) = T1(e 1 -Ue 3), n> O. (4.28) 

Since kl and k3 have positive imaginary parts, (4. 28) 
shows that both of the transmitted waves are attenuated. 
The k3 wave decays within a transition layer containing 
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[a/ d] lattice points, where [x] means the least integer 
greater than x. The corresponding transmission co­
efficient T3 is of order £2. This can be verified by ex­
panding n in (4.27) in a power series with respect to 
the small parameter £. Therefore, the major contribu­
tion to transmitted field is due to the k1 wave. By com­
paring (4.21) with (1. 4.15), we see that k1 is approxi­
mately equal to the effective propagation constant de­
fined there only when (a-1d»> 1,i.e., when the correla­
tion length is small compared with the lattice spacing. 
This means that we cannot,in general,replace the ran­
dom lattice in the half -space by a perfect lattice with 
an effective propagation constant. 

5. REFLECTION AND TRANSMISSION OF A WAVE 
INCIDENT FROM A RANDOM LATTICE 

We only consider a one-dimensional lattice with an 
exponential correlation. We suppose that the incident 

-ik nd 
wave from the random lattice for n > 0 is e 1 where 
k1 is given by (4.21). We seek a solution of the form 

ik nd ik nd ik:!,d 
v(n) = e 1 + r 11e 1 + r 13e , n ~ 0, 

n:s O. 

(5.1) 

(5.2) 

The three constants r ll , r 13 , and T 10 are as yet to 
be determined. To this end, we first equate (5.1) to 
(5.2) at n = 0 and then substitute (5.1) and (5.2) into 
(3.10) to obtain 

(5.3) 

Qd Qd Qd Qd r 11 (1 + e I - eO) + r 13(1 + e 3 - eO) 

(1 -ikld _ ikOd) _ • 2 w 4 m 2 (1 _ -d/a) 
+ + e e - t£ 2a sinkod e • 

(5.4) 

Inserting (5.1) and (5.2) into (4.16) gives an addition­
al equation 

(1 - e -io.t IUdf1r 11 + (1 - e -i0.3+ IUd t1 

io.-Ii)d -1 
x r 13 + (1 - e 1 ) = O. (5.5) 

Equations (5.3) to (5.5), when solved, yield solutions 
for r 11'r13 , andTlo givenby 

r ll = Ell/D, 

r 13 =E13/D , 

T 10 = 1 + (Ell + E 13)/D. 

(5.6) 

(5.7) 

(5.8) 

Here,for brevitY,we have defined E ll ,E13,and D as 

1 + e-ikld _ ikod 

1 - e-'(kl+K)d 

J. Math. Phys., Vol. 14, No. 10, October 1973 

(5.9) 

(5.10) 

(5~ 11) 

1369 

Results (5. 6)- (5. 8) can be made explicit by expand­
ing (5.9)-(5.11) in powers of £2. However, we shall not 
do so because the expanded forms are rather lengthy. 

H the incident wave is e-ik~, the corresponding solu­
tion is of the form 

-ik nd 
v(n) = T 30e 0, n :S O. 

n ~ 0, (5.12) 

(5.13) 

The coefficients r 31 , r 33' and T 30 are obtainable 
from r 11' r 13' and T 1 0' respectively, by interchanging 
kl and k3 in (5.9)-(5.11). 

6. REFLECTION AND TRANSMISSION BY A 
FINITE IMPERFECT CRYSTAL 

Let us consider an infinite lattice in which only the 
point masses at nd, n = 0,1,2, ... ,N, are defective, 
while the remaining ones are uniform. For the re­
flection and transmission problem, we have to solve 
Eqs. (3. 8) and (3.9) subject to boundary conditions 
(3.14) to (3.17). 

Case A: Uncorrelated mass defects 

This is a modification of Case B in Sec. 4 to a finite 
N. Equation (3.8) reads 

(~2 + /32)v(n) + £2 (g2)w
4

m
2 

g(w)v(n) = 0, 
a 1 

O<n<N. (6.1) 

The solution of (6.1) can be written as 

O:sn:SN, (6.2) 

where k1 and k2 are two roots of the dispersion Eq. (4. 9) 

To satisfy the boundary conditions, we use (6.2) in 
(3.14) to (3.17) to get 

T 1 +T2 =1+r, 

T1e ik1d + T 2 e
i
,,:!d = b 1 + b2 r, 

T iNkld T iN":!d - T 
1 e + 2 e -, 

T 
i(N-:Ukld T i(N-l)":!d - b + b T 

Ie + 2e - 3 2' 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

After solving the system of Eqs. (6. 3) to (6.6) and 
simplifying the results, we obtain, with L = Nd 

T = 1- £2 w
4
m2{g2) ( 2 -(32 + 3i) 

1 2a 1 /3(4 - /32)1/2 (3(4 - (32)1/2 

2'k L 
X g(w)e • 1 + 0(£4), (6.8) 

£2w 4m 2(g2) (2-{32 2ikL 
r = - 2a 1,9(4 _ /32)1/2 /3(4 _ ,92)1/2 (I + e 1) 

. 2ik L ) + t(3 - e I) g(w) + 0(£4), (6.9) 

T = 1 - £2 - - - t [ 
w4m2{J.L2) (2-/32 ) 

a 1{3(4 - /32)1/2 2/3(4 - ,92)1/2 

11 ik L x g(w~ e I + 0(£4), (6.10) 
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We note that, as L ~ 00, T 2 and T approach zero, and 
T 1 and r yield, respectively, the transmission and re­
flection coefficients given by (4.11) and (4.12) for a 
semi -infinite imperfect crystal. This is a consequence 
of the positivity of Im{k1} so that the exponential func-

. IkL 21kL • 
hons eland e 1 decay In L. 

If we specialize our results (6.7)-(6.10) to the 
one-dimensional case, they become 

T 1 = 1 - te 2 -- -- - 1 + 3t . (J1.2) [(Wc)2 ~-1(Wclw)2_2 .) 
8 W (w clw)2 - 1 

+ O( e4), (6.11) 

T
2

=_e2 {1J.
2
) f(Wc\2 -lJ-1(1 +i(Wclw)2_ 2 ) 

8 L w/ (welw)2 - 1 

x e2ikL + O(e 4), (6.12) 

T = _ ie2 (J1.2) [(We\ 2 _ 1J-1( (wei w)2 - 2 
8 w/ (w elw)2_1 

x(i + e2ikL) + i(3 - e2ikL») + O(e4), (6.13) 

T = 1 _ ie2 (1J.2) [(Wc)2 _1]-1( WcIW)2 - 2 _ i) 
8 W (wc/w)2-12 

x e ikL + O( e4), (6.14) 

Case B: Exponentially correlated mass defects in 
one-dimension 

This is the finite version of Case C in Sec.4. We 
may write down the solution as follows: 

n ::S 0, ( 6.15) 

(6.16) 

( ) _ T ikond 
V n - e , n 2: N. (6.17) 

Imposing the boundary conditions (3.14) to (3.17) 
gives four equations for the unknown constants r, Tv 
••• ,T4 ,T 

4 

~ T j = 1 + r, 
j"1 

~ ik d 
'-' Tje j = b 1 + b2 r, 

j"1 

4 ik L 
~ Tje 'j = T, 

i"1 

~ ik (L-iJ) 
'-' Tje j = b 3 + b2T. 
1"1 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

Since there are six unknowns, we need two more 
equations. The additional two equations can be obtained 
by inserting (6.16) into (4.18) when 0 < n < N. This 
procedure yields 

t T
j
(l - e;(kF

K
)df

1 = 0, 
j"1 

t T
j
ei(kj +K)(L+d)(l - e i (kj -K)df1 = O. 

j"1 

(6.22) 

(6.23) 

Now Eqs. (6.18) to (6.23) determine the six constants 
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uniquely. To solve them, let D 1 denote the determinant 
of a 4 x 4 matrix [dij] with elements dij , i,j = 1,2,3,4; 
defined by 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

Further, let D 11 designate the cofactors of the matrix 
[d ij ]; E j the determinants with jth column of D 1 replaced 
by ones; F k' the determinl!Jlt obtained from D 1 with the 
kth column replaced by e 'kjL, j = 1, 2, 3, 4. Then the 
solutions of Eqs. (6.18) to (6.23) read 

r = ~ (2El sinkod - e2(E1 + E 2 ) 

x w2m(g2)(1 - eik(L+d») _ 1 
2a sink od(l - e iKd ) , 

(6.28) 

T j == ~ (2Dlj sinkod - e2(Dlj + D 2j ) 

w2m{/..L2)(1 - eiK(L+d») 
x , j == 1,2,3,4, 

2a sinkod(l - e iKd ) 
(6.29) 

T = - 2F sink d - e2 (F + F. ) W g • i ( 2m( 2)(1 - e iK(L+4») 

D 1 0 1 2 2a sink od(l - elKd) 

(6.30) 

Here we shall not expand these formulas in e for 
compactness. 

7. THE SCATTERING BY A SEMI·INFINITE 
IMPERFECT CRYSTAL WITH AN ARBITRARY 
CORRELATION FUNCTION 

Let us generalize the problems conSidered in Sec. 8 
to that of an arbitrary, homogeneous and istropic cor­
relation function. To solve this problem, we shall 
adapt the Weiner-Hopf method to the case of a discrete 
variable. We first introduce a sequence h'(n) defined as 

w 4 m 2 "" 
h'(n) = (a 2 + /3 2 )v(n) + e2 -- ~ 

a 1 n'''O 

GR(ln-n'l,w)V(n'), -oo<n<oo, (7.1) 

where GR(ln -n'l ,w) was given by (3.8). We note that 

h'(n) = 0, n> O. (7.2) 

In order to apply the conventional Wiener-Hopf 
method, we extend the definitions of functions of dis­
crete variable f(n) (or sequences) to that of functions 
of a continuous variable f(x) as follows 

f(x) =f(n), (n - ~)d < x::s (n + ~)d, 
n = O,± 1,± 2,···. (7.3) 

With the aid of (7.3), Eqs. (7.1) and (7.2) can be re­
written as 

e2w4 m 2 r"" 
h(x) = (a~ + /3 2 )v(x) + a 1 d Jo 

~(1 x - y I, w)v(y)dy, - 00 < x < 00. (7.4) 
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Here, we have put 

w 4 m 2 ~ 
h(x) = h'(x) - ~£2 --d- Gtt(JXJ ,W)V(O), 

a1 
x< 0, (7.5) 

w 4 m 2 ~ = - !-£2 (i"d li.tC( I x J ,W)V(O), x> 0, 
1 

(7.6) 

and 
~~v(x) = v(x + d) - 2v(x) + v(x - d). (7.7) 

Let the Fourier transform of a function f(x) be de­
noted by 1(>..) which is given by 

(7.8) 

and by h(>..) or 1- (>..) if the range of integration in (7.8) 
is over (0,00) or over (-00,0). Taking the Fourier trans­
form of (7.4) yields 

where 

r(>..) = 4 sin>..d/2 (~OS>"d - 1) [(1 _ e;(A- ko>df1 

+ r(l - e;(A + ko>d) -1 _ i (b1 + b2 r) (1 _ e iAd/2) 
>.. 

(7.10) 
. d . d -i)"d/2 1 (1 + r) 

+ i(e-·ko + re'ko ) e >.. - + i2 >.. 

. )..d/2 
x [(coskod - 1)(1 - e' ) + (cos>..d - cos>..d/2)]. 

In obtaining the above equations, use has been made of 
the boundary conditions (3.14) and (3.15). We assume 
that the coefficient of v+(>..) can be factored into the form 

w 4 m 2 ~ m (>..) 
2(cos>..d - 1) + (:32 + £2 ~ [GnJ(>", w) = m:(>..) , 

(7.11) 

where m+ and m_ are analytic functions of >.. in the res­
pective regions Im{A} ~ 0 and Im{>..} ::s O. Then Eq. (6. 9) 
becomes 

(7.12) 

_ Since by definition, v+(>..) , is analytic for Im{>..} ~ 0 and 
hJ>..) is analytic for Im{>..} "" 0, the left-hand side and the 
right-hand side of (6.12) have domains of analyticity 
similar to that of m+ and m_. As the real axis is the 
common domain of analyticity, each side can be continu­
ed analytically into the whole A plane. Furthermore, 
each side must be an entire function e(>..). Therefore, 
we have m+v+ = e and 

v+(>..) = e(>..)/m +(>..). (7.13) 

The entire function e(>..) can be determined by regu­
larity conditions at infinity and the boundary conditions 
(3.14) and (3.15). The solution v(n) is thus obtained by 
taking the inverse transform of (6.13) and setting x = 
nd. 

8. MEAN GREEN'S FUNCTION FOR AN INFINITE 
LATTICE 

We wish to find the mean Green's function Ho which 
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satisfies the equation 

( t a ~2 + W2m)H (n,n') + £2w 4m 2 L) 
j=1 j j 0 1 

1371 

G(n, l)R(n, l)Ho(l, n') = 0nn' (8.1) 

and the outgoing condition at infinity. Here 0nn' is an 
abbreviation for the triple product of Kronecker deltas 

nj=1 0njn}' 
We first consider a one-dimensional case with an 

exponential correlation function, then indicate how to 
treat the general problem. In this case, Eq. (7.1) re­
duces to 

x eiKI n-/I dH (l n') = 1. Ii (8.2) 
0' a lin" 

To get an outgoing solution of (8.2), we try a solution 
of the form 

H ( ,) _ '"'( ik111l-n'ld _"" ik3In-n'ld) 
on,n - •• e ve , (8.3) 

where k1 and k3 were defined by Eq.(4.20) and n,a are 
constants to be determined. For (8.3) to satisfy (8.2), 
we substitute the former into the latter, for n '" n' , to 
obtain 

A[( 2 (cosk 1d - 1) + w:m - £2{J.l.2) 

X w 4m 2 sink1d ),eiklln-n'ld] 
2a sinkod (cosk1d - cosKd) 

- a [(2 (cosk3d -1) + w:m - £2(J.l.Z} 

w4m 2 sink1d ik 111- n'l d 

X 2a sinkod (COSk3d _ cosKd) e 3 

w4m 2 (Sink1d sink 3d ) 
+ £2 a sinkod cosk1d - cosKd - aCOSk3d - cosKd 

x eIKln-n'ld] = O. (8.4) 

Invoking (4.20), (8. 4) can be reduced to 

sink 1 d sink 3d 
cosk 1d - cosKd - a COsk3d _ cosKd = O. (8.5) 

For n = n', the above substitution yields 

(. lk d ik d (w2m ) A\2(e 1 - 6e 3) - (1 - a) 2 - -a-

+ £2 w4m2{g2) i sink1d- sinKd 
2ia 2 sinkod cosk1d - cosKd 

. sink 3d - sinKd ) 1 -ta --coSk3d - cosKd - a . (8.6) 

Upon solving (8.5) and (8.6), we obtain 

a = sink1d (cosk 1d - cosKd)/2ia (cosk1d - cosk3d), 

(8.7) 

(8.8) 

In obtaining (8.8), use has been made of Eq. (4. 20) 
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which holds for an infinite lattice as well. This com­
pletes the construction of the mean Green's function 
Ho' 

For an arbitrary correlation function in three dimen­
sions, the Fourier transform technique may be employ­
ed to solve (8.1). The answer will be explicit if the 
inversion is possible. 

9. MEAN GREEN'S FUNCTION FOR A SEMI­
INFINITE LATTICE 

We shall now construct the mean Green's function 
H(n, n') corresponding to the special Case (C) in Sec.4. 
To this end, it is found convenient to treat two cases 
separately according to the location of a unit source in 
the right or in the left half-planes. For a source placed 
at n'd with n' < 0, the mean wave excited must satisfy 
the equations 

(~2 + w2m) H(n,n') _ e: 2 w.4m~(J.L2) ~ 
a 2za smkod 1=0 

x eiKII-n I dH(l,n') = 0, n> 0, n' < 0, 

( 2 w2m) H( ') 1 ~ + -a- n,n = aOnn" n,n' < 0. 

(9.1) 

(9.2) 

Also, we require H(n, n') to conform with an analog of 
boundary conditions (3.14) and (3.15). For n < 0, we 
write H(n,n') as 

eikOln-n'ld 

H(n,n') = 2ia sinkod + U(n,n'), n,n' :S 0, (9.3) 

where U(n,n') is a solution to the homogeneous Eq.of 
(9.2). 

Since a unit source at n'd produs:es a plane wave 
incident upon the random lattice, it must be reflected 
and transmitted. U is therefore a reflected plane wave, 
so that 

n,n' :S ° (9.4) 

where r is the reflection coefficient given by (4.26). 
With this interpretation, one sees clearly that the trans­
mitted waves are 

) 1 i"'d( ik1"d tks nd 
H(n, n' = 2ia sink od T 1 e e - ne ) , 
n ~ 0, n' :S 0. (9.5) 

Here T;L. and n are the same constants found before 
[see (4.24) and (4.27)]. 

When the source lies in the right half-plane, we have 
to interchange the right-hand sides of (9.1) and (9.2). 
Let us express H(n,n') in the form 

H(n,n') = Ho(n,n') + V(n,n'), n,n' ~ 0, (9.6) 

in which Ho is the Green's function computed in the pre­
vious section and V(n,n') is a solution to the homogene­
ous equation (9.1). In view of (8. 3),Ho constitutes two 
plane waves incident from the right half-plane. Again 
this may be viewed as a reflection and transmission 
problem which was solved in Sec. 5. The function V in 
(9.6) represents the reflected field. Making use of the 
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results obtained before, we have 

n,n' ~ 0. (9.7) 

The corresponding transmitted wave is given by 

H( ,) - A(T ik1"'d _ aT ik3n'd) -iko"d n,n - 10e 30e e , 

n:s 0, n' ~ 0. (9.8) 

Equations (9.4),(9.5),(9.7),and (9.8),when taken all 
together, specify the mean Green's function H(n,n') 
completely. 

It is noted that, in general, the mean Green's can be 
obtained by the Wiener-Hopf method in a similar man­
ner to that we presented in Sec. 7. 

APPENDIX: APPROXIMATE EVALUATIONS OF g(w) 
IN TWO AND THREE DIMENSIONS 

The Green's function (1. 5) can be rewritten as a 
single integral involving an exponential function and a 
triple product of Bessel functions (see Ref. 14): 

( l)N r,N 1 +N roo ~ ( 
G(n, m) = 217 (i) j=l J !~~+)O exp Lit \M ow2 - 2 

where N is the dimensions of the lattice and lj = nj -
mj>j=1,2,3. 

When n = m, it yields 

g(w) = (2i )N lim,. Jo
oo 

exp ~t ~ ow2 - 2 £ K j ± ie:)] 
17 <-+0 L \ j=l 

For N = 2,g(w) can be expressed in terms of the com­
plete elliptic integral of the first kind K as follows 
(p. 314, Ref. 13): 

g(w) = (-1/...JK 1K 2 )(l/217)3zK(z) (A3) 

in which z was defined by (1.11). 

Since K is related to the hyper geometric function F 
by K(z) = (17/2)F(~,~; 1; z) (see p. 591, Ref. 13) for z real 
and z < 1, it follows by the principle of analytic continu­
ation' that the expression (1.10) holds for other values 
of z in the domain of analyticity of F in the complex z 
plane. 

For N = 3 and K2 = K 3 , (A2) yields 

g(w) = - i (2
1 )3 lim+ Jo

OO 

exp fit (MoW 2 - 2 t K j ± i~] 
17 .~o L j=l oJ 

By using the identity (p. 294, Ref. 14) 

(A5) 
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(A4) becomes after an interchange of order of integra­
tions 

( 
1)4 11/2 

g(w) = 27T fo fo
oo expGt~ow2 - 2 t1 K j )] 

x J 0(2K 1t)J o( 4K 2t coscf»dtd4>. (A6) 

The integral with respect to t in (A6) is similar to 
(A2) for N = 2; therefore, we may apply the previous 
results to obtain 

g(w) = - i(...!.)4 ~ (11/2 (coscf>t1/ 2W1/ 2F 
27T v'K,K" Jo 

1 2 (~,~; 1; W1/2)dcf>. (A7) 

Here we have defined W to be 

W = 4(2K1K 2 coscf» 1/2 {[M ow2 + 4K1 (coscf> - 1)] 

x [M o(w~ - w 2) + 4K2 (coscf> - 1)]}-1/2. (AS) 

By letting I; = eie , and extending the range of integra­
tion in (A7) to -7T/2, we arrive at the expression (1.12) 
for g(w) as a contour integral along a semicircle C as 
shown. By closing the contour and applying Cauchy's 
theorem, we conclude that 

4 5 

fc = ~ fLj + ~ fc k• j=l k=1 
(A9) 

J. Math. Phys., Vol. 14, No. 10, October 1973 

1373 

Along the path and inside the contour, the singular 
(branch) points are 0, ± i, I; l' I; 2' where I; j are the roots 
of 1;2 + 2(01 - 1)1; + 1 = 0 when 01 is small. It is found 
that fc k = 0 and the main contributions are due to fL1 
and fLz' Since II; 1 -1;21 ~ 2.J20 1 is small, in the integra­
tion, we approximate the regular parts of integrand !(O 
by !(I;o),where 1;0 = 1- 01 R11. In this way we obtain 

(26 )1/2 

fLl - L(201~lh [20 2 (1]2 - 201)]-1/2FH,~;1;2[202 
(1]2 - 2c5 1 )]-1/2}d1). (A10) 

By using the asymptotic formula (1.12) and effecting 
a trigonometric substitution, we arrive at the result 

fLl + fLz -± 2i(20 1)1/4(202)1/2(1/7T)[(4In2 + In(1/0 1) 
11/2 (11/2 

+.J7T + 7Ti) fo COS1/2 IJdIJ + Jo COS1/2IJ In secIJdIJ]. 
(All) 

When (All) is used in (A9) and (1.15), the result (1.19) 
follows. 
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An information-theoretical background is presented here for the functional random-walk model of a 
many-particle system, which was recently proposed to simulate nonequilibrium statistical mechanics 
in a certain coarse-graining sense. Next, entropy productivity and the maximum-entropy state in the 
model dynamics are studied with the new definition of entropy, which turns out to be a natural 
extension of the original Boltzmann entropy. 

1. INTRODUCTION 

It has been a central problem to derive the macro­
scopically observed, irreversible development of a 
many-particle system from the exact mechanical basis 
represented by the Liouville equation. For example, the 
ergodic theory may say how to deal with an equilibrium 
state of matters, but "gives no indication how quickly 
systems approach equilibrium" (Prigogine l ). Therefore, 
it is natural to consider that some kind of operation 
independent of mechanics should be added in order to 
obtain a satisfactory explanation of such an irreversible 
development. 2 Such an operation, however, does not seem 
to have been generally established yet, although we have 
seen many operations, case by case, that might be called 
"ad hoc approximations." (E.g.,Stosszahlansatz. A very 
general one was recently discussed by Prigogine,l but 
the whole dynamics including this is far from Simplifying 
the Liouville dynamics.) It is for this reason that the 
author has explored a new irreversible dynamics in as 
general and as Simple a way as possible to filter the 
irreversible behavior out of the many-particle motion 
based on the exact dynamics. Thjs dynamiCS was recent­
ly formulated into the functional random-walk model of 
a many-particle system.3 

This model dynamiCS looks quite Simple in structure. 
We treat, rather than 6N-dimensional phase points, 
stochastic particle-number density fields in the one­
body phase space. The equation for the probability 
distribution functional of the field is written in the 
Fokker-Planck form, which guarantees the irreversibility 
in question only if there exists any particle interaction. 
Such an operation is clearly defined in the theory to 
make it link to the exact dynamics, though some ambi­
guity was left in its true physical meaning despite our 
~.ttem!lt to relate it with coarse graining. Here, the 
phY3icai meaning of the operation will be discussed 
again from another angle,i.e.,from the information­
theoretical point of view (in Sec. 2). 

If we have only a macroscopic (mechanically very 
imperfect) knowledge of a system at the initial time, we 
will probably take the most unbiased initial condition 
for this knowledge in the exact dynamics. (This idea was 
adopted in plasma physics. 4 Such a limitation of initial 
conditions may result in prohibiting reversed processes, 
though any entropy production is not included.) However, 
when we macroscopically observe the system at some 
time later, is the information supplied by the exact 
dynamiCS still the most unbiased for the observed 
quantities? The answer will be "no." But why "no"? If 
we conSider this time as a new initial time, the most 
unbiased condition for the macroscopic knowledge at 
hand should then be taken. So long as the information­
theoretical idea is consistently pursued, we must dis­
continuously change the condition on the exact dynamiCS 
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at every macroscopic observation. Since the information 
entropy for the most unbiased condition is larger than 
any other and since the exact dynamiCS conserves the 
total entropy of a closed system, the information entropy 
must jump at every macroscopic observation. Then, what 
happens, if we observe the system macroscopically in a 
continuous manner? It is in this limit that a new entropy­
productive dynamics, the functional random-walk model, 
may replace the exact dynamiCS. We may consider this 
idea as a dynamic version of Jaynes' statistical theory.S 

Validity of the new dynamics is, however, to be finally 
judged by whether it can be well connected with the 
known equilibrium statistical mechaniCS of a steady 
state. Theref ore, after entropy productivity of the 
dynamics is proved, the state with the maximum entropy 
is presented explicitly (in Sec. 3). This was left as a 
future problem in the previous work.3 It is further shown 
that the mode of the stochastic particle-number density 
field for this state is equal to the Maxwell-Boltzmann 
distribution with the particle-interaction energy included 
in a self-consistent way (in Sec. 4). This result is of the 
same quality as Jaynes' in his information-theoretical 
approach to an equilibrium system, and can be well com­
pared with the Boltzmann and Gibbs equilibrium states. 
It is finally verified that our information entropy reduces 
to the original Boltzmann entropy when the state is in 
equilibrium and if the number density of particles is 
lar.ge (compared to one). 

For Simplicity, the discussion will be given for a 
closed, single-component many-particle system governed 
by classical mechanics. 

2. INFORMATION-THEORETICAL BACKGROUND 

According to the previous work,3 the basic Fokker­
Planck equation in the functional random-walk model is 
formally written as 

aj} __ J _O_[QZ(X)-lri- + III 0
2 

at - x oz(x) py.- 2 x x 6z(x)oz(x') 

x {(J>[cp(lq - q'l );z(x)z(x'}]ip}dxdx', (2.1) 

which governs the probability distribution functional p of 
the particle-number density field nz(x) in the one-body 
phase space X (3 x). Here,n is the average number den­
sity, t the time variable, %z(x) the functional derivative 
with respect to z at x, (J> the operator which makes the 
subsequent symmetric function positive definite, [ ; ] 
the Poisson bracket, cp(q) the interaction potential bet­
ween particles, q being the displacement vector part of 
x, and Q is the nonlinear operator defined as 

Qz(x) = [Hl (x); z(x)] + n 1 [cp( Iq - q' I); z(x)z(x')]tk', (2. 2) x 

Copyright © 1973 by the American Institute of Physics 1374 
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in which H 1 (x) is the one-body Hamiltonian; Q may be 
called the Vlasov operator, since 'OJ /'0 t = QJ gives the 
self-consistent Vlasov equation.2 ,3 

Associated with (2.1), there are three conditions. 
First, 

f. 156z = 1; 
B 

(2.3) 

this is the normalization for 15 to be a probability distri­
bution' and fBflZ denotes a functional integral over the 
function space B. In order to prescribe B, we have 

lim f. z(x)dx/V = 1 
V->oo X 

(2.4) 

and 

lim{j nH1(x)z(x)dx 
V ... oo x 

+ f.1 ! n2 <p(lq-q'l)z(x)z(x')dxdx'}/V=const, (2.5) xx 

where V is the volume containing the whole system; the 
latter gives the average energy of the closed system in 
question. 

The previous work shows that if the operator <P is 
removed from(2.1), the equation becomes perfectly 
equivalent to the exact dynamiCS, the Liouville equation. 
In this case, however, the physical meaning of 15 and Z as 
described above should be completely lost. In other 
words, our (macroscopic) picture of the system as an 
entirety of random motion of particle-number density 
fields is tied to a slight mathematical modification of 
the basic equation by <P. We will then, in the exact dyna­
mics, distinguish the dependent variable as p from 15. 
Originally, p(z, t) was introduced as the functional 
Fourier transform of a state-Junctional.3 

A general solution for 15 may be given in the form of a 
repeated multiple integral. That is, 

P(Z,t) = lim f. ... f.P M (ZL/Z L-1) 
t:.t ... o B B 

L-1 
.. . Pt:.t (Z2/Z1)p(Zl, 0) II flZk, (2.6) 

k=l 

where z = ZL, t::.t = t/L, and the superscripts indicate 
the order of the time subintervals. The infinitesimal 
kernel P t:.t is explicitly obtained from (2. 1) as 

P t:.t(Zk+1/z i) = I exp{if. yk(X)[Zk(X) - Zk+1(x) 
B X 

+ t::.tQzk(x)]dx - !t::.t11 yk(X)yk(X') xx 

<P[ <p; Zk(X)Zk(X') ]dxdx'}6y k. (2.7) 

In parallel with this, we can write a general solution for 
p in the exact dynamics; namely 

p(z, t) = lim f. ... f. Kt:.t(ZL/Z L-1) 
.o.t-+O B B 

L-1 
.. . Kt:.t(z2/z 1)p(zl,0) II /jzk. (2.8) 

i=l 

K t:.t is also obtained, using the expression (2. 7), as 

K -- -P -- +-t::.t (
Zk+1) (Zk+1) 1 f. 1 fl2 

at Zk - t:.t Zk 2 X X flZk+1(X)/jZk+1(X') 

x (1- <P)[<P;Zk(X)Zk(X')]P .o.t(Zk+1/Zk)dxdx'. (2.9) 

From this relation we can know to what degree the two 
dynamiCS differ from each other. 
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Fo,! instance, let us see the development in t::.t of F 1 
and F1 , the one-body distribution functions in both dynam­
ics, remembering that3 

F1(x, t) = f.z(x)p(z, t)/jz, 
B 

F1(x, t) = f.z(x)p(z, t)flz. 
B 

(2.10) 

(2.11 ) 

If F 1 = F 1_and p = p at time tk, it is easy to prove still 
that Fl = F 1 but P ;>' pat t k+1 = t k + t::.t, by performing 
the functional integrations [derived from (2.10), (2.11)], 

F 1 (x, t k+1) = ~ ~zk +1(x)Kt:.t(zk+1 /Zk)p(Zk, t k )/jZk/jZk+1, 
(2.12) 

F 1 (x, t k +1) = ~~Zk+1(x)P .o.t(Zk+1 /zk)p(Zk, t k )/jZk/jzk +1, 

(2.13) 

respectively, while such a perfect equality does not occur 
with all the other many-body distribution functions (F s 
for s ~ 2). Thus, it is obvious that the model dynamics 
is not able to compete with the exact dynamics in pre­
dicting a change of the microscopic state, but that 
macroscopically we would hardly discriminate the pre­
dictions from both of a change of the state in t::.t, if al­
most all macroscopic information comes from the one­
body distribution function. 

If this is the case, which is more suitable for the 
macroscopic description of a system, p or p? Accord­
ing to the information-theoretical argument for statisti­
cal phYSiCS,S reality of a distribution may be measured 
by the magnitude of information entropy for the same 
amount of restricted knowledge of the system. It is 
well known that the Liouville equation conserves total 
entropy. Therefore, if the new dynamics produces total 
information entropy, 15 will take a relative advantage 
over p in describing the system which has developed 
only with the restricted knowledge F 1 (= F 1) from t k to 
t k +1 • The same thing can be said for any time-sub­
interval. 6 And then, in the limit t::.t ~ 0 the new dyna­
mics for p will completely replace the dynamics for p. 
Entropy productivity of the functional random -walk 
model is to be proved in the next section. Thus, so long 
as we observe a many-particle system in a macroscopic 
way, i.e., with a very restricted knowledge like, at most, 
the one-body distribution function, it may be reasonable 
that we rather adopt the functional random -walk model 
than pursue the exact dynamics with a large amount of 
complete knowledge (i.e., F s for all s) most of which is 
never observed. 

In other words, our standpoint is different than that of 
the traditional mechanics which deals with a complete 
knowledge of the state of all particles; the Liouville 
equation is based on this mechanics. However, we need 
not approach the reaility in only this way, unless we 
really have such a complete (microscopic) knowledge of 
the system from the beginning to the end. We may have 
a definite reason to introduce an information-theoretical 
approach, when the problem is treated with very in­
adequate knowledge. 

3. ENTROPY 

A. Definition of H function 

According to Shannon,7 it might seem natural in our 
case to define the H function (per degree of freedom) ass 

H s = lim f. pM 10g(JM /jz M/M, 
M-+oo B 

(3.1) 
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where pM(Z) = P(ZM) and 
M 

ZM(X) = .'LJbjsj(x), b j = fxz(x)sj(x)dx; (3.2) 
,=1 

{S j (x)} is an orthonormal function set in X; in other 
words, pM is the cylinder functional of p in M dimen­
sions. However, we should take into account that there 
are many possible permutations of particles which yield 
the same density field z(x). Then, the total number of 
the permutations makes the weight for the field z(x), 
which is calculated as 

N! = exp (- 'LJnz(x j ) logz(X)M + const), 
II[nz(xj)M]! j (3.3) 
j 

using the Stirling formula for N = nV -700. 

If the weight now calculated is considered, the suitable 
form of our H function should be 

in the cylinder functional approach. !:.!,HM is assumed 
to exist. For simplicity, all Min (3.4) may be omitted 
with the understanding that p was originally introduced 
as a cylinder functional. 3 

B. Entropy production 

With the aid of (2.1), the time rate of H is calculated to 
be 

dll 1 (li2P 1 lip lip 
dt ='2 ~fxfxD liz(x)liz(x') -P- liz(x) liz(x') 

nli(x - x') ) + p dxdx'6z, 
z(x) 

(3.5) 

where D = <P[<1>;z(x)z(x')]. It is because of the following 
equality that the effect of the Q term in (2.1) vanishes in 
(3.5): 

J f _6 - (QzP)dx lolp exp(nf z logzdX)JliZ 
B x liz(x) r \' x 

= J (f _li_(Qz)dx - nJ (logz + 1)QZdX)PliZ. 
B x liz (x) x (3.6) 

The two terms in the big bracket vanish on account of 
the boundary condition on z(x) as well as of the form of 
Q: (2.2). If we make the substitution 

p =A exp[- nJ z logzdx -IV(z)] (3.7) 
x 

with A as the normalization factor, (3. 5) reduces to 

dH 1 li 2 IV - = - -JJ: J: D dxdx'j)liz. (3.8) 
dt 2 B X x 6z(x)liz(x') 

IV can be conSidered as an analytic functional: 

IV(Z) =!J: J: A 2(x 1 ,x2)[Z(x1 ) - zo(x1 )] xx 
x [z(x2) - ZO(x2)]dx 1dx2 
+ higher-order terms in z-zowith A .. (x l' ... ,x .. ). 

(3.9) 

Here zo,A2, ... ,A .. are certain definite functions in 
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X ,X2, ... X", respectively. exp(-IV) may be understood 
as a functional Gram-Charlier series apart from the 
normalization factor, if All for n ~ 3 are small. All is 
symmetric with respect to interchange of arguments 
without loss of generality, and A2 and IxIxA.(z - zo) ... 
(z - zo)dx 3 ••• dx

71 
are naturally assumed to be nonnega­

tive definite functions of Xl and x2 in order for p to be 
functional-integrable [to give (2.3)]. Accordingly, 
li2IV/liz(x)liz(x') must be nonnegative definite. 

Thus, the double integral over X2 in the integrand of 
(3.8) makes the trace of the product of two nonnegative -
definite functions, which can be proved to be nonnegative. 
(See Appendix.) Hence, it is clear that 

dll - ~ 0 (the general H theorem). 
dt 

(3.10) 

It is concluded that entropy as the minus H function is 
always produced except at the only one state, where all 
A .. = 0 so that 1/1 = o. 

C. Steady state to be expected 

p for that state is expressed as 

Poe = Aoe exp t n Ixz 10gzdX). (3.11) 

If this is not a steady-state solution of (2.1), this state 
should readily be succeeded by another state at the next 
instant, so that entropy should increase endlessly so long 
as the assumption made on An holds. We could not 
expect any steady state to exist in this case, since 
entropy must be constant in a steady state. However, this 
fact contradicts a general property of the Fokker­
Planck equation: There should be a unique steady state 
which all states go towards.3•9 Hence, it may be reasoned 
that 11 should be the steady-state solution of (2.1) fin­
ally approached by all p. and that the entropy with p"" 
should be maximum.1 0 Since our system is conditioned 
by (2. 5), (3. 11) may be considered to correspond to the 
Gibbs microcanonical distribution, 11 although all points 
in the B space are never equally realizable. 

4. MAXIMUM-ENTROPY STATE 
It is desirable to know the most probable value, i.e., 

the mode of z(x) at the state with the maximum entropy. 
It is given as the z(x) in the (Riemannian) B space such 
that the exponent of (3.11) is maximum, and then it 
should be solved by the standard variation method 
applied to the quantity - n I xZ logzdx under the sub­
sidiary conditions (2.4) and (2. 5). It is easy to see that 
the implicit solution is a Maxwell-Boltzmann distribu­
tion with the particle interaction included in a self­
consistent way: 

z B(X) = exp{- A - J3[H1 (x) + nIx <1>( Iq - q'l )zB(x')dx']}, 

(4.1) 

where exp(- A) and J3 are the constants to be determined 
by the conditions (2.4) and (2.5). It must be noted that 
ZB(X) is also a particular (Maxwellian-type) solution of 
the steady Vlasov equation, as is easily verified.2 

The exponent of (3.11) may be rewritten in terms of 
the functional Taylor expansion around the maximum in 
B; 

Poo = Aoeexp(- nIxz BlogzBdx - ~ Ix : (Z-ZB)2dx - .. .) . 
B (4.2) 

When n is large enough, as is usually the case (even with 
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such a rarefied gas as Boltzmann considered), the 
Gaussian distribution in (4.2) is a good approximation to 
Pao' Then, the mode ZB may actually be considered as the 
average. From this result, the significance of the parti­
cular steady-state solution of the Vlasov equation is 
clear. One can say that Z B (x) 1s irreversibly approached 
by the one-body distribution FI (x, t) [cf. (2.11)], despite 
the fact that the Vlasov equation itself is time-rever­
sible! If so, this solution must be widely applicable to 
the equilibrium state of any closed (classical) system: 
gas, liquid, etc., so long as we view the system macro­
scopically (through the model dynamics). 

Now, comparison with the known theories of Boltzmann 
and Gibbs is possible at this equilibrium state. Our 
steady solution (4.1) for PI is obviously an extension 
of the Boltzmann distribution to the case with the parti­
cle interaction present. Equation (4.1) is canonical type, 
so that PI is conjectured to be also close to the one-body 
distribution to be derived from the Gibbs canonical dist­
ribution. In fact, all the theories are coincident in the 
limit when the particle interaction tends to vanish. It is 
interesting to see that our theory derives a canonical­
type distribution of P 1 so naturally without appealing to 
the ergodic theory: indeed, calculation of the mode ZB is 
obviously on the same basis as the information-theoreti­
cal approach of Jaynes. 5 However, we could hardly 
expect a complete accord between our equilibrium state 
and the Gibbs state, since our macroscopic viewpoint is 
not so precise microscopically (as was described in 
Sec. 2). 

As is obvious in (3. 4),H is 10gA"" at P = Pao ' In order 
to compare our entropy with Boltzmann's original form, 
a new definition, changed in level, 

S = - kH + k 1 Pao logpaooz (4. 3) 
B 

is most suitable, where k is the Boltzmann constant. In 
fact, at p = Pao this entropy is related to the original 
Boltzmann entropy, as follows [cf. (4. 2)]: 

Sao = - 1m1 Z logzdx:5 - ImJ ZB logzBdx, (4.4) x x 

where the bar on top means the average with the mea­
sure Poo' The Boltzmann entropy gives an upper bound of 
Soo' which is asymptotically approached as n ~ <Xl. By 
virtue of (4.1), we have 

with 

Sao ~ k[N;\' + nfJ1 E(X)ZB(X)dx] x 

E(x) = H 1 (x) + nfxcp(lq - q'l )zB(x')dx'. 

(4.5) 

(4.6) 

If N;\. is read as thermodynamic potential,/3 as 1jkT (T: 
absolute temperature), and nJxE(x)ZB(X)dx as total 
energy, the rhs of (4.5) gives the usual thermodynamic 
entropy.!1 It should be noted,however, that the particle­
interaction energy is counted twice in the total energy 
so read, so that the correspondence of rhs of (4.5) with 
thermodynamic entropy is not exact by that amount. 
Anyhow, the consideration given here is meaningful in 
indicating that Sao is fairly close to equilibrium thermo­
dynamic entropy. 

5. CONCLUSION 

We began with investigating the information-theoreti­
cal background of the functional random -walk model, 
which is useful for understanding the physical meaning 
of the operator <P in (2.1). Next, the general explicit 
form of p with the maximum entropy was obtained with 
the aid of a proper H function newly introduced. The 
general H theorem was given together. It was proved 
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that at the maximum-entropy state the one-body distri­
bution function F1 in the model dynamics is canonical 
with the smoothed-out interaction potential included, 
while the solution Pao at the same state corresponds to 
the micro-canonical distribution. Then, as far as we 
treat maximum -entropy states, an analytical approach to 
the model dynamics is possible and we do not need any 
such Monte Carlo quadrature as was discussed in some 
detail in previous work.3 The relation of our information 
entropy and the original Boltzmann entropy was also 
clarified. 

APPENDIX 

The trace of the product of symmetric nonnegative­
definite functions A(x,x') and B(x,x'), Le.,JxJxA(x,x') 
B(x',x)dxdx' is treated in the approximate form: 
~i kA ikB ki , when the functions are apprOximated by 
finite Fourier series made from the orthonormal func­
tion set {s i (x); i = 1, ... , M} in X as 

A(x,x') = ~AiliSi (X)Sk(X'), etc. (AI) 
i,k 

Now, consider the orthogonal transformation (T ik ) which 
diagonalizes both matrices (A ik) and(B ik) simultaneous­
ly. Then, we have 

Aik = ~ T JiAj Tjlt, (A2) 
J 

Blti = ~ TlltMl T 1i , (A3) 
I 

where (A,) and (Mi) are the eigenvalues of (A ik) and 
(B ik)' respectively, and we note, by definition, 

all Ai :?: 0, 

all Mi:?: O. 

Hence, 

~AiltBlti = ~ ~ (Tj;T/i)(TjkTlk)AjMZ 
i,k i,kj,l 

(A4) 

(A5) 

= ~ AjMj :?: 0 (A6) 
J 

on account of (A4), (A5). Thus, the proof of 

11 A(x,x')B(x',x)dxdx' (A7) 
xx 

is concluded, if the Ihs of (A6) converges to that of (A 7) 
in the limit M ~ <Xl. 
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Let {JC = L2 (R, dx), q = x, p = - id/dx} be the standard Schrodinger representation of the 
canonical commutation relations for one degree of freedom. For a, b, c, real scalars, put 
Habc = 1p2 + q4 + aq3 + bq2 + cq and q(t) = exp(itHabc)q exp(- itHabc )' Then q(t) satisfies the 
operator equation iHf) = .~ 4q3 (t) - 3aq2 (t) - 2bq(t) - c. For n = 0, 1,2,3 we define renorma­
lized (or Wick-ordered) nth powers of q, denoted q(n); these are polynomials of degree n in q and 
are characterized by the conditions: 

[q(n+l),pl =i(n+ l)q(n) t 
1 

q(O) = I ) 

for n > 0, fG*q(n)Gdx = 0, where G = ground state of Habc ~ 
In terms of these powers the equation for q(t) can be written q(l) = - 4q(3) - Aq(2) - Bq(1) - C, 
for some realA, B, C which are functions of a, b, c. This has the form ofa much studied prototypical non­
linear quantum field equation in the somewhat (physically) trivial case of one space-time dimension. 
Basically, we prove two results concerning this equation which we feel are of interest, because they may 
provide some basis for conjecture about the behavior of nonlinear field equations in a higher number of 
dimensions. First we determine a nontrivial condition which the renormalization constantsA,B,C must 
satisfy and which implies that the set of points (A ,B ,C) assumed as a,b ,c vary is of measure zero in R 3 • 

We study in somewhat more detail the situation when a = c = O. The associated renormalized equa­
tion then has the form q(!) + Bq(!) = - 4q(3), where B = B(b). We determine the qualitative be­
havior of the function B(b) as b .... ± 00 and show for example that B(b) is not one-to-one. As a 
corollary, for many values of B, there exist at least two equations of the form q(l) + Bq(1) = _ 4q(3) 
with the same B, but which are not unitarily equivalent in a sense, to be precised. Such nonunicity 
cannot occur for linear equations, as has been known for some time. 

I. INTRODUCTION AND MATHEMATICAL 
PRELIMINARIES 

Let {JC,p, q} be the standard Schrodinger representa­
tion of the canonical commutation relations [p, q] = 
pq - qp = - i for on~ degree of freedom; i.e., JC = 
L2(R, dx) is the Hilbert space of square-integrable 
functions on the real line R with respect to Lebesgue 
measure, q is the operator of multiplication by x, and 
p = - id/dx, with the usual domains which make these 
(unbounded) self-adjoint operators in JC: 

D(q) :::: {u E JC: xu(x) E JC}, 

D(p) = {u E JC: du/dx E JC} = {u E JC: k/l(k) E L2(R, dk)}, 

where du/dx is taken in the sense of distribUtions and 
u(k) is the Fourier transform of u(x). For n '" 1 we have 
the commutation relations 

[p", q] :::: - inp .. -l ([X, Z] = XZ - ZX). 

(1. 1) 

(In such equations we interpret the equalities to hold 
on the common domain of the operators on both sides of 
the equations.) 

The proof of the following theorem is contained in the 
results of Ref. 1 (with some changes in notation.) 

Theorem l. 1: The operator Habe = ip2 + q4 + aq 3 + 
bq2 + cq with a, b, c real is self-adjoint on the domain 
D :::: D(p2) n D(q4). The spectrum of Habe consists 
solely of real eigenvalues, bounded below, with a mini­
mum eigenvalue. Each eigenvalue corresponds to 
exactly one (linearly independent) eigenvector in JC. 

We denote the inner product on JC by (', • > which we 
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take to be conjugate-linear in the first slot: (,J" v) :::: 
k u(x)* v(x) dx. It follows easily from Theorem 1. 1 that, 
up to sign (± 1), there is a unique real-valued, normaliz.ed 
function Gabc(x) E JC with HabcCaoc(x) = wabcGabc(x), 
where wabc is the minimum eigenvalue of Habc ' We call 
Gabc(x) and wabc the ground state and ground state energy, 
respectively. In all future equations or relations in­
volving Gabc(x) we mean to allow for a possible ambi­
guity in sign; this ambiguity disappears if only even 
powers of Gabc(x) appear which will often be the case. 
For n :::: 0, 1, 2, 3 we put Eabe(qn) :::: (qnGabe , Gabc> and 
similarly for E..bc(pn), n = 0, 1, 2. The following theo­
rem will be of use in a later section. 

Theorem l. 2: Suppose a :::: C :::: 0, so that Habc :::: Hb = 
ip2 + q4 + bq2. Then, for positive odd integral m, 
Eb(qm) and Eb(pm) are zero if they exist at all. 

Proof: The transformation x ~ - x is unitary on JC 
and leaves Hb invariant; thus Gabc(- x) :::: ± Gabc(x). . 
Since this transformation takes q ~ - q and p ~ - p, it 
follows immediately from the definitionS of Eb(qm), 
Eb(P m) that these are zero for all odd positive m for 
which they exist. 

We put q(t) :::: exp(itHabe ) q exp(- itHabc,)' Then an. easy 
calculation using the commutation relations (I. 1) 'Yields 

q(t) :::: - 4q(t)3 - 3aq(t)2 - 2bq(t) - c, (1. 2) 

where the double dots denote d 2/dt2 and where the 
equality is to be interpreted on a suitable domain on 
which both Sides of the equation make sense. (The exact 
nature of such a domain will be unimportant in the pre­
sent work.) We view (1.2) as the one space-time dimen-

Copyright © 1973 by the American Institute of Physics 1378 
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sion form of the heuristic quantum field equation: 

Dcp = P(qJ), where 0 = d 2/dt2 - v 2 , 

qJ = qJ(x, t) is a quantum field, P a polynomial. 

Actually this last equation will not make sense unless 
the application of P to qJ is interpreted via suitable re­
normalization. In the next section we define certain re­
normalized powers of q and p which are analogous to the 
usual Wick-ordered powers of the field qJ. 

II. THE RENORMALIZED POWERS OF q AND p 

Let v E X be in the domain of qN for some positive 
integer N (i.e., qNv E X) We define renormalized 
powers of q, denoted q (n) (n ~ N) by the conditions: 

q (0) = qO = 1, 

q (n) = qn + an~~ qn-l + .. , + a~n)q + aft), 

[q(n+l),p] = i(n + l)q(n), 

(q (n)v, v) =0 (n;"l), 

(n.1) 

where the aj (i) are real scalars and equality is as usual 
interpreted on suitable domains. The ap> can be deter­
mined recursively, and we find 

n 
q (n) = L; 6 C(jv , ,jn-s' n, s) 

s =0 ~+2j2 + •.• + (n-s)jn_s = n- s 

X E(q)hE(q2)i2 • •• E(qn-s)in- sq S
, (n.2) 

where 
j + ••• +j 

.. (- 1) 1 n-S n! (jl + ... + jn-s)! 
C(Jv"Jn - s ' n ,s)= i j 

jl!" ·jn-s! s! (2!) 2. "«n - s)!)n-s 

and E(qm) = (qmv, v). 

We define p (n) by the same formula with p replacing 
q everywhere. 

The verification of (n. 2) is somewhat tedious and we 
shall omit the detailS, since we will not need to make 
use of it except for small values of n which can be 
dealt with by using (n. 1) directly. For example, 

q (0) = 1, 

q (1) = q - E(q), 

q (2) = q2 - 2E(q)q + 2E(q)2 - E(q2), 

q (3) = q3 - 3E(q)q2 + (6E(q)2 - 3E(q2»q 

+ 6E(q)E(q2) - 6E(q)3 - E(q3). 

(II. 3) 

From now on, by q (n), we shall always mean the re­
normalized powers of q with respect to v = Gabc ' 
[Notice that no sign ambiguity occurs here, because only 
Gabc 2 enters in the definition of Eabc(qm).] Now putting 
q (n)(t) = exp(itHabc ) q (n) exp(- itHabc )' we write (I. 2) in 
the following form: 

ij (1)(t) = - 4q (3)(t) - Aq (2) (t) - Bq (1)(t) - C, (n. 4) 

and we may then determine A,B, C as functions of a, b, c 
so that (n.4) is the same as (I. 2). Using (11.3), we find 
after a short calculation 

A = 3a + 12Eabc (q), 

B = 2b + 12Eabc(q2) + 6aEabc (q), 
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It would be of interest to know exactly which real 
values A, B, C assume as a, b, c range over all real 
values. (An analogous question for the case of field 
equations in a larger number of dimensions has been 
raised in Ref. 2. We do not answer this question in any 
great detail, but we will show that many values are not 
assumed. Later we will consider the case a = c = 0 
(which forces A = C = 0) and will determine the quali­
tative behavior of B (b) for large Ib I. 

Thearem II. 1: Let t be any real number. Then, as 
functions of a, b, c, A, B, and C are invariant under the 
transformation: 

a ~a' = a + 4t, 

b ~b' =b + 3ta + 6t2, (n.6) 

c ~c' = c + 2tb + 3t2a + 4t3. 

Proof: If we make the substitution q ~ q + t, then 
Habc ~Ha' b'c' + canst = tp2 + q4 + a'q3 + b'q?- + 
c'q + const. It follows easily that Gabc(x + t) = 
Ga'b'c'(X). LetA',B',C' be given by (II. 5) with a,b,c 
replaced by a', b', c'. We may verify directly that A = 
A',B = B', C = C'. For example, we have 

A' = 3a' + 12Ea'b'c,(q) = 3(a + 4t) + 12k xGa'b'c,(x)2dx 

= 3a + 12t + 12 k (x - t)Ga'b'c'(X - t)2dx 

= 3a + 12t + 12 k (x - t)Gabc (x)2dx 

= 3a + 12Eabc(q) = A. 

The calculations for B = B' and C = C' are Similar, 
and we shall not reproduce them here. 

Remark: A more elegant and less computational 
proof of the theorem may be based on certain invariance 
properties of the renormalized powers under transla­
tions. However the proof depends on certain "unicity" 
results for the q (n) and these are difficult to formulate 
without expressing the relations (II. 1) in bounded form 
[i.e., in terms of the exp(itq (n», exp(itp), etc.] in order 
to avoid troublesome domain considerations; we have 
deliberately Sidestepped such questions here. (These 
delicate questions have been investigated in great de­
tail in Refs. 2, 3,4, for example.) 

Carollary II. 1: The set of points: {(A, B, C) : (a, b, 
c) E R3} is of measure zero in R3. 

Proof: It is known that the Eabc(qk) are smooth 
(real analytic) functions of a, b, c. For the proof we 
refer to Ref. 1, where analogous results are proved; the 
same methods of proof apply in the present case. The 
theorem shows that the mapping (a, b, c) ~ (A, B, C) is 
continuum to one from R3 to R3, and then Sard's theo­
rem5 implies that the image of this mapping is of mea­
sure zero in R 3 • 

In the next section we will prove that, in the case a = 
c = 0, the image of the mapping b ~B(b) is not all of R, 
and this mapping is not one to one. 

III. THE EQUATION q(lJ+B(b)q(ll = _4q(3J 

In this section we will consider the special case a = 
c = 0, so that Hb = Ho bO = tp2 + q4 + bq2. We denote 
Eo bO' Wo bO' Go bO by Eb, Wb, Gb• 

Theorem I. 2 together with (n. 5) implies that 

C = c + 3aEabc(q)2 + 2bEabc (q) + 12Eabc (q)3 

+ 4Eabc (q3) - 12Eabc(q)Eabc(q2). 

(n.5) A(O, b, 0) = C(O, b, 0) = 0 and B(b) = B(O, b, 0) 

= 2b + 12Eb(q2). (Ill. 1) 
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From (TIl. 1) we have immediately 

lim b .... +oo B(b) = + co (III. 2) 

since Eb(q2) ;. O. We will show that limb-->_OO B(b) = + co 
also. This requires a series of estimates to follow. 

Proposition III. 1: For b < 0, Eb ;. b-1Wb• 

Proof: WbGb = HbGb =: HOGb + bq2Gb so that Wb =: 
b(q2Gb, Gb) + WgGb, Gb). Since Ho = tp2 + q4 ;. 0, we 
have Wb ;. bEb(q ) and dividing by b gives the result. 

Proposition III. 2: For b < 0, wb ., 1- b - b2/4. 

Proof: For any U E D(Hb), with (u, u) = 1, we have 
Wbu, u) ;. Wb, because Wb is the minimum of the spec­
trum of Hb • 

Now by taking u(x) == (2/1T) 11 4 exp{- [x - (I b 1/2)1/2J2} 
this last estimate yields Wb ., 11/16 - b/2 - b 2/4. 

Combining Proposition Ill. 1 and Proposition TIL 2 
yields 

(Ill. 3) 

Since B(b) == 2b + 12Eb(q2), we have 

B(b) ;. 2b + 12(- 1 + b- l - b/4) = - 12 - 12b- l - b 

(b < 0) 
and thus lim b .... -oo B(b) == + co. (Ill. 4) 

We shall not discuss here the question of whether 
B(b) assumes the value zero. 

We now turn to the question of unicity (or lack of it) 
for the equation lj(1)(t) + Bq(1)(t) =: - 4q (3)(t). We have 
Hb = ip2 + q4 + bq 2, and we define a "renormalized" 
Hamiltonian by Hrea = ip (2) + q (4) + ~ B(b)q CJ). (This 
may also be denoted by 14en . b when confusion is likely 
to occur.) USing the explicit form of the q (k) and p (k) 

together with Theorem I. 2, a routine calculation yields 

Hren == iPCJ) + q(4) + iB(b)q(2) =: Hb - Wb ;. O. (III. 5) 

Thus Gb is the ground state of ~n and Hren Gb = O. 

For real b, consider the system 

l
' X=: L2(R, dx), q (k),p (j) ,l 
~n == ip(2) + q(4) + iB(b)q(2);' 0 • 

q (l)(t) + B(b)q (1)(t) = - 4q (3)(t) 

Gb, the ground state of Hren; ~n Gb == 0, 

Here B(b) = 2b + 12Eb(q2). Also we have q(1) = q, 

(b) 

p (1) == P by an application of Theorem I. 2. If it is neces­
sary to distinguish the system (b) to which certain 
operators or objects belong, we will use the subscript 
"b" for this purpose. 

We will say that two systems (b) and (b ,) are unitarily 
equlvalent if there is a unitary operator U from Xb to 
X b, with UGb = Gbl Uqb(k)U-l == qb,(k) UPb(j)U-l ==pb,W, 
U~n.b U-l == Hren. b' • 

Theorem Ill. 1: Let b and b I be two distinct real 
numbers for which B(b) == B(b'). [These exist by (III. 2) 
and (III. 4).] Then the systems (b) and (b') are not uni­
tarily equivalent. 
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PrOOf: If a unitary operator U existed giving such 
a unitary equivalence, then because UqU-l == q, it follows 
easily that Gb(x) == Gb,(x) (with a proper choice of sign 
for each). But this is impOSSible, for 

Hb Gb == HOGb + bq2Gb == wbGb, 

Hb,Gb, == HOGb, + b'q2Gb, = wb,Gb" 

and if Gb == Gb" we would then have 

[(b - b')q2 + wb ' - Wb]Gb = 0, which forces Gb == 0, 

since b ;>! b'. This is absurd, because Gb is the ground 
state for Hb • 

Remarks: (i) In view of the preceding result, we 
feel that it is not unlikely that a Similar situation exists 
in the case of nonlinear field equations in, say, two space· 
time dimensions of the form 

(0 + m 2 )cp (1) == - >.cp (3) (A > 0), (III. 6) 

where cp (1) and cp (3) are Wick-ordered products with 
respect to the physical vacuum. 2 However, (TIL 6) is 
largely heuristic and difficult to interpret as a bona fide 
equation unless, for example, spacial cutoffs are intro­
duced, and this introduces additional terms in the equa­
tion. The question of the unicity of (TIL 6) is much deeper 
than any of the questions we have discussed in the pre­
sent work. 

(ii) The unicity of positive energy free fields (corres­
ponding to equations of the form (0 + m 2 )cp == 0) is well 
known. 6 In the context of the present work, a special 
case of this result appears in the following terms: 

If we put He == ip2 + iq2 + cq == !p2 + i(q + c)2 -
c 2/2, then the ground state of He is Ge(x) == (7T)-1I4 
exp[- (x + c)2/2], with HeGe = weGe, We == i(l - c 2). We 
have also 14en == ip (2) + iq CJ) == He - We' and q (1) == q -
E9(q) = q + c. If q(t) == exp(itHt;.)q exp(- itHe), then q(t) + 
q~t) + c = 0, and in terms of q (.l) this equation can be 
written q (1)(t) + q (l)(t) == O. However, it is easily seen 
that for any real c, the systems 

are all unitarily equivalent; explicitly for c "" c', the 
unitary operator Uc•e ': X --7 X given by (Ue•e ,f)(x) == 
f(x + c' - c) for f E X, transforms (c) into (c') in the 
sense discussed above. 
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Application of Kraichnan's direct interaction approximation 
to kinematic dynamo theory. I. Incompressible isotropic 
turbulence and a singular integral equation 
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Using Kraichnan's direct interaction approximation in the induction equations we set up the kine­
matic equations governing behavior of an ensemble average magnetic field under homogeneous, in­
compressible, mirror symmetric isotropic velocity turbulence, We demonstrate that the normal 
modes of the field depend on the solutions to a nonlinear single integral eq uation. For a simple form 
of the velocity turbulence we have investigated some of the properties of the integral equation. In 
particular, we have been able to construct a particular solution. We also point out what remains to 
be done if we are to obtain all the modes of the ensemble average magnetic field. We have done this 
calculation so that the behaviour and normal modes of the field can be investigated at arbitrary 
magnetic Reynolds' numbers. This is in contrast to customary approximations (like first-order 
smoothing theory) which normally are valid only for very small Reynolds numbers, if at all, and 
which therefore omit large regimes of considerable physical interest. 

I. INTRODUCTION 

In a remarkable paper published in 1961 Kraichnan1 
developed a powerful method (now called the direct in­
teraction approximation-we shall refer to it as DIA 
hereinafter) for handling turbulence problems. The main 
thrust of DIA is to replace the true turbulence problem 
by a model, or models, that lead, without approximation, 
to closed equations for correlation functions and Green's 
functions. The model solutions are exact descriptions of 
possible dynamical systems. Consequently, as Frisch 
(1968)2 has noted, the "the exact model solutions are 
approximate solutions of the true turbulence problem." 
And as such they are both physically realizable and 
acceptable. 

In the decade or so since the introduction of DIA, 
Kraichnan has applied this method to the problem of 
hydrodynamic turbulence (see numerous papers in the 
Physics of Fluids from years 1962-1972). There are no 
free parameters in the theory and the method reproduces 
the observed turbulence spectrum. The model results 
agree closely with the observations at both large and 
small Reynolds' number indicating that the range of 
validity of DIA is over all possible values. This is in 
contrast to so-called "closure approximation" schemes 
like first-order smoothing theory (FOST), for example, 
which neglect certain correlation functions and whose 
range of validity, if any, is therefore restricted to small 
Reynolds' number. 

Using Kraichnan's DIA we shall give here the calcula­
tion of isotropic turbulent kinematic dynamo activity 
valid for all Reynolds' numbers. We refer the in­
terested reader to Kraichnan's (1961)1 original paper 
for the prescription used in obtaining the DIA model 
turbulence kinematic induction equations. We shall 
quote here only those results which are pertinent to our 
particular problem. 

II. FORMULATION AND REDUCTION OF THE 
EQUATIONS 

Consider an infinite medium, of constant reSistivity 1), 

devoid of any large scale veloCity shear but possessing 
a turbulent velocity vex, t). Then the induction equation 
describing the magnetic field behavior is 

(1 ) 
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with V·B = O. 

Under Kraichnan's-DIA the equations for the ensemble 
average magnetic field B and the ensemble average 
Green's tensor, ~,are 

( a 2\ _ _0_ It dt'd3 ' at - T/V JBi - EijkEklmEaJKEKLM aXj -00 X 

X (Gma(x,tlx',t') a!:, [UIL(X,tlx',t')BM(X',t')]) (2) 

and 

a it d "d3 " + EijkEklmEabKEKLMaY:: t' t x 
J 

x (G ma(X, t I X", t") a:;; [UIL (x, t 1 x", t")GMU(x", ('I x', t')]), 
where 

UlL (x, tlx', t') = (VI (X,t)VL(X/, t'l), 

with Gij(x, tlx', t') = 0 for t < t', 

(3) 

(4) 

since only the forward-going (in time) Green's tensor is 
physically permissible. 

For homogeneous, stationary velocity turbulence (and 
we shall restrict our attention to just this form of tur­
bulence for the remainder of the paper), we have 

UlL = UIL (x - x', t - t'). (5) 

Then by inspection of Eq. (3) we see that the Green's 
tensor must be homogeneous and stationary, so that 

Giu(x,tlx',t') = GiU(X-x/,t- t'l. (6) 

It then follows that with 

and 

B i (x, t) = J B i (k, w) exp[ i(k· x - wt)]d3kdw, (7a) 

[Uij (x - x', t - t'), Gij (x - x', t - t')] (7b) 

= J [Uij (k, w), Gij (k, w)] exp{i[k. (x - x') - wet - t')]} 
x d3kdw, 
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Eq. (2) becomes 

(1)k 2 - iw)Bi (k, w) = - (27T) 4 f d3KdO[kjKbBb(k, w) 

x [- Uia(K, O)Gja(k - K, w - 0) 

+ Uja(K, n)Gia(k - K, w - 0)] 

+ kjkbBa(k, w)[Ujb(K, O)Gia(k - K, w - 0) 

- Uib(K, O)Gja(k - K, w - Om, (8) 

while Eq. (3) gives 

(1)k2 - iw)Giu(k, w) = (27T)-41l iu - (27T)4f d 3KdOk;(kb - KJ 

X [Uia(K, O)Gja(k - K, w - O)Gbu(k, w) + Ujb(K, 0) 

X Gia(k - K, w - O)G au(k, w) 

- Uib(K, n)Gja(k - K, w - O)Gau(k, w) 

- C!;a(K, O)Gia(k - K, w - O)Gbu (k, w)), (9) 

where use has been made of ki Bi = 0 to eliminate some 
of the terms in Eq. (8). 

Note that Eq. (8) is linear in B. So a solution to it 
exists if, and only if, a dispersion relation is satisfied. 
Our task is to obtain that dispersion relation and to see 
if it possesses any growing modes. If so we then have 
regenerative dynamo action under kinematic velocity 
turbulence. In order to obtain the dispersion relation 
from Eq. (8) we must do two things: first we must 
specify the tensor form of Uij (k, w); second we must then 
solve Eq. (9) exactly for Giu(K, w). Armed with this in­
formation we can then substitute for Uij and Giu in Eq. (8) 
to obtain the dispersion relation. 

III. INCOMPRESSIBLE, ISOTROPIC VELOCITY 
TURBULENCE 

In view of the debate [LII, L2, LV, Krause and 
Roberts (1973)6] that has arisen concerning the contribu­
tion of incompressible, isotropic velocity turbulence to 
kinematic dynamo action it seems appropriate here to 
use the DIA equations (8) and (9) to attempt to settle the 
controversy once and for all. As we have remarked 
earlier all previous attempts to construct kinematic 
dynamo action uSing incompressible, isotropic velocity 
turbulence have been limited by invocation of FOST. 
Under FOST the Reynolds' number must be small; and 
when the Reynolds' number is small there is no possi­
bility of dynamo action as we shall presently demon­
strate using the DIA equations. 

For incompressible, isotropic, mirror symmetric 
velocity turbulence we have 

so that k i Uij = k j Uij = O. 

(10) 

Further E(k, w) "" 0 for all real k and w by Cramer's 
theorem (1940).7 

We define the two basic integrals 

(lla) 

and 
J iajb" == f Uia(K, O)Gjb(k - K, w - O)K" d3KdO. (llb) 

In terms of these integrals Eqs. (8) and (9) become 

Ba(k, w){ll ia (1)k 2 - iw) + (27T)4[k j (Jjbiba - Jibjba) 

+ kjk b (ljbia - libja)]} = 0 (12) 
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and 

Giu (k, w)(1)k2 - iw) = (27T)-41l iu - (27T)4k j 

x [G bu(k, w)kb(liaja - ljaia) 

+ Gau(k, w)kb(ljbia - libja) 

- Gbu(k, w)(Jiajab - Jjaiab )], 

where we have used the incompressibility condition 

(13) 

k i Uij = 0 to eliminate several of the terms in Eqs. (8) 
and (9). 

Now note by inspection of Eqs. (10)-(13) that since both 
Uij (- k) = Ui · (k) and Ui · (k) = Uji (k) it follows that 
G iu (k) = G iuC- k) and GiU (k) = G ui (k), so that G iu must 
have the form 

(14) 

where Rand S are (as yet) unknown scalar functions of 
arguments k, w. 

We can use the symmetry conditions (10) and (14) to 
simplify Eqs. (12) and (13). 

First note that we require only J iaja" in both Eqs. (12) 
and (13). From the definition (llb) and using the sym­
metry conditions (10) and (14) we must have 

Jiaja,,(K,O) = AllijK" + Blli"Kj + Cllj"K i + DK iKjK A' 

(15) 
where A, B, C, D are scalar functions of arguments K, O. 

It then follows that 

J iaja" - Jjaia" = (B - C)(ll ibK j - Il jb K i ). (16) 

We also have 

liaib(k,W) = alliall jb + (3(ll ij ll ab + Il ib ll ja ) 

+ dlliakjk b + IElljbkika + ~(Ilibkjka + Ilab k ikj 

+ Il jak i k b + Il ij k ak b) + Jllliakjkb + vkikjkak b• (17) 

where a, {3, d, IE, ~, Jl, 1/ are scalar functions of arguments 
k,w. 

It follows that 
kbkj (Ijbia - libja) = [a - (3 + k 2(Jl- 1E)](k21l ia - k i k a)· 

(18) 
Use of Eqs. (16) and (18) in Eq. (12) and (13) gives 

Giu(k, w)(1)k2 - iw) = (27T)-41l iu - (27T)4(1l iak2 - k i k a) 

X Gau{k,w){[a - (3 + k 2(Jl - IE)] - (B - C)} (19) 

and 

Ba(k,w){(1)k 2 - iw)ll ia + (27T)-4Iliak2[a - (3 + k 2(Jl - IE) 

- (B - C)]} = O. (20) 

Now 

B - C = - (2k2)-lki J iajaj (21a) 

and 

a - (3 + k 2(Jl - IE) = (2k2)-lka(kiliajj - kbliai~ (21b) 

Using Eqs. (10) and (14) in Eq. (21) gives 

M(k, w) == k 2 [ a - (3 + k 2 (Jl - IE) - (B - C)] 

= f E(K, O)(k2 - (k.K)2K-2)R(ik - Ki, 

x w - O)d3KdO. (22) 
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Now use Eq. (22) in Eq. (19) to obtain 

R (k, w)(1)k2 - iw + (21T)4M) == (21T)-4, 

k 2S(k, w)(1)k2 - iw) == (21T)4MR (k, w). 

Write Q(k, w) == (21T)4R (k, w) when Eq. (23) becomes 

Q(k, w)[1)k2 - iw + J E(K, O)(k2 - (it. K)2K-2) 

(23) 

(24) 

x Q(lk - KI, w - O)d3KdO] == 1. (25) 

So the immediate task before us is to solve Eq. (25) 
for Q(k, w) with k real. Having obtained the solution we 
then note that the dispersion relation obtained from Eq. 
(20) is just8 

~ = 1)k2 - iw + (21T)4M == 0, (26) 

for comPlex w and real k. 

Knowing the solution of Eq. (25) for Q, we look for the 
zeros of Q-1 for real k in the complex w plane. These 
are the normal modes of the large-scale magnetic field. 

Note that Eq. (25) is a nonlinear four dimensional inte­
gral equation for Q. Note further that the structure of 
the solution depends on the form chosen for E(k, w). It 
is, therefore, difficult to solve in general. 

IV. THE FIRST·ORDER SMOOTHING THEORY RESULT 

Assume a priori that 

l1)k2 - iw 1 » 1 J E(K, O)(k2 - (k. K)2K-2) 

x Q(lk - KI, w - O)d3KdOI. (27) 

Then a first iteration of Eq. (25) gives 

1 2' J E(K,O)(k2 - (k. K)2K-2) 
- ",. 1)k - zw + d 3KdO. 
Q [1)(k - K)2 - i(w - 0)] 

(28) 

With Q-1 == 0, Eq. (28) is precisely the dispersion rela­
tion obtained uSing FOST (see, e.g., LV, Appendix C). 

The zeros of Eq. (28) for complex w and real k then de­
termine the normal modes of the large-scale magnetic 
field under first-order smoothing theory. The require­
ment that inequality (27) be valid then gives (for k, 
w --> 0) about 

IJE(K,O)KdKdOI« 1)2. 

Now (V2) == J E(K, O)d3KdO. 

Let E be characterized by a scale-length L. Then 
equality (29) demands that 

L(V2) 1/2 « 1). 

(29) 

(30) 

And Eq. (30) is the requirement that the Reynolds' 
number L(V2)1/2j1) should be small. Further, it can be 
shown (LV, Appendix C) that when E(k, w) 2:: 0 then Eq. 
(28) has solutions with w == wR - ia where a> O. So the 
normal modes of B, which were chosen to have the depen­
dence exp(- iwt), are decaying and no regenerative dyna­
mo action results under the approximation of FOST. 

However, as Hammerstein (1930)9 has pointed out, a 
uniformly convergent approximation of a nonlinear inte­
gral equation of Hammerstein's normal form 10 exists 
if, and only if, 1 J~j(y,u)dul"", iC 1Q2 + C2Q for all Q, 
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where, in our case, C1 (> 0) is the lowest positive eigen­
value of the real symmetric, positive definite kernel 

+1 
K2J (1-/-L2)E(lk+KI,w-o)lk+KI-2d/-L. 

-1 

In the present case where j0l1/u, this condition be­
comes 

which is not satisfied for all Q. Accordingly any approxi­
mate solution to Eq. (25), like that given by FOST, is sus­
pect,!l 

In order to ensure that an accurate solution is obtained 
one must first solve the nonlinear integral equation 
exactly and then look at the behavior of the solution for 
various values of the Reynolds' number. We shall first 
show how to solve Eq. (25) for particular forms of the 
turbulence spectrum and then we will pOint out what re­
mains to be done in order to obtain solutions for arbi­
trary turbulence spectra. ConSider then the exact solu­
tion to Eq. (25). 

V. AN EXACT SOLUTION OF EO. (25) FOR STATIC 
TURBULENCE 

Let the velocity turbulence be independent of time when 

E(K,O) == ~ (K)o(n), (31 ) 

with HK) ~ O. 

Write cp(k, w) == Q(k, w)-l when Eq. (25) can be cast in 
the form 

cp(k, w) - (1)k 2 - iw) == J [k2 - (k' K)2K-2 ]~(K) 

x cp( 1 k - KI. w)-ld 3K. (32) 

The immediate task before us is to solve Eq. (32) 
given ~(k) and to then find the zeros cp(k, w) on the real k 
axis for complex w. 

The form of Eq. (32) can be simplified with the follow­
ing reductions. 

Let ~(k) be characterized by a scale-length L (the 
correlation length) and an "intensity" V2 so that with 
k --> kL, w -->1)L-2 w , cp --41)k2<fJ we have 12 

<fJ(k, w) - (1 - iwk-2) = R2 J: K2J(k, K)<fJ(K, w)-ldK, (33) 

where 

J+1 
J (k, K) == 21T d/-L (1 - /-L2)~( 1 k2 + K2 + 2kK/-L 11/2) 

-1 

and where the magnetic Reynolds' number R == LV /1). In 
Eq. (34) Hk) is, of course, the dimensionless energy den­
sity of the velocity turbulence per mode k. 

Thus we are to solve the nonlinear integral Eq. (33); 
the normal modes of the ensemble average magnetic 
field are then given by the zeros of <1>. Note that since 
the mode dependence is exp(zk. x), the zeros of <I> must 
occur on the real k axis in order to preserve physical 
sense. Zeros in the complex k plane would lead to spa­
tially unbounded magnetic fields, which are physically 
absurd. 

Note that J(- k, K) == J(k, K) == J(K, k), so that 
<1>(- k, w) == <I>(k, w). So if <I> possesses a zero at k = m, 
it also possesses one at k == - m. 
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Supposing that ~(k, w) does possess a zero at k = m the 
first question that arises is how to interpret the singu­
lar integral occurring in Eq. (33). Here we follow a 
prescription given by Landau (1946)13 and move the sin­
gularities from k = ± m to k = ± (m + iE) and then let 
E ~ + O. This is done so that only physically causal 
solutions to the DIA equations arise. [For an elegant, 
and excellent, discussion of this point under wider condi­
tions than we are concerned with here see Jackson 
(1960).14] 

Now let ~(k) be chosen so that J(k, K) is analytic in both 
k and K with an essential singularity on the circle at in­
finity. [For example, ~(k)ak2 exp(- k2) is one such func­
tion.] 

The method we give below for constructing solutions 
to Eq. (33) splits into two parts. First, there is consi­
deration of a particular integral; second, we show that a 
limit form of the integral satisfies Eq. (33). 

A. Consideration of an integral 

Consider 

I = to K2J(k, K)[1 - iwk-2 + A1J(m, K) + A~CM, K)]-ldK, 
~ ~~ 

where ± (m + iE) and ± CM + iE) CM > m) are zeros of 
1 - iwk-2 + A1J(m, K) + A2JCM, K) which, as E ~ + 0, lie 
on the real k axis at points K = ± m, K = ± M. 

What we wish to show is that, apart from functions of 
w, m, and M the integral I has the general form 

1= aJ(m,k) + bJCM,k). 

If we can do so then by assuming 

we can obtained closed expressions for Al and A2 and 
so effect a solution to Eq. (33). 

Consider then the integral path along the real K axis 
from - 00 to + 00 and path closure by a large semi'" 
circle in the upper half complex K plane. On the semi­
circle the integral of I will converge for k < M at 
least as fast as exp(- 1M - k 11K I ) [we have in mind 
Hk) ~ kn exp(- k2) at large k]. 

And then 

(36) 

where the sum m i is over the zeros of the denominator 
1 - iwk-2 + A1J(m, K) + A2JCM, K) occurring for K > O. 
Further J'(m,mi ) == (a/ak)J(m,k)1 k=mi' 

As M~· 00 (m finite) it is a simple matter to show that 
J(k,M) = 0 (exp - (k - M)2) and that A2 ~ OCMn), so that 

If.!,f ~ 00) = 21Tim 2J(k,m)[2iwm-3 + A1J'(m,m)]-1 (37) 

[and again we have in mind that Hk) - k n exp(- k2) for 
large k]. 

B. Application to Eq. (35) 

Assume that ~(k, w) has only two zeros, both on the 
positive real K axis at K = m and K = M, respectively. 

Then write 

(38) 
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Now assume 

~(k,w) = 1- iwk-2 + A1J(k,m) + A2J(k,M) (39) 

to obtain (as M ~ 00) 

~(k, w) = 1- iwk-2 + i1Tm2R2J(k,m)/a~~~ w) I k=m' (40) 

Equation (40) can be solved simply,for ~(m,w) = 0, 
by definition and this implies 

a~~~w)l_ ==~'=-i1TR2m2J(m,m)(1-iwm-2)-I. (41) 
k-m 

Also by differentiating Eq. (40) we obtain 

~'= 2iwnr3 + i1TR2m2(~/)-llaJ(k,m}\ 
\ ak / k=m • 

(42) 

Equations (41) and (42) are compatible if, and only if, a 
dispersion relation is satisfied. 

The dispersion relation is 

2(1 + ~mJ'/J)(1 - iwm-2) = 1 ± [1 + 2i1TR2m 3 

x (J + ~mJ')]l/2, (43) 

where J == J(m,m), J' == (aJ(k,m)/akh=m' 

It is a Simple matter to show from Eq. (34) that 
2J + mJ' > 0 for all m as long as ~ (k) ~ 0 for all k. 

Now both modes of Eq. (43) are not permitted. For if 
R ~ 0 (i.e., V -70) the upper sign predicts growing 
modes even in the absence of velocity turbulence. This 
is phYSically absurd. So the upper sign must be re­
jected on physical grounds. Then with iw = - a + i A 
(and with growing modes if a > 0) we obtain 

2(1 + ~mJ'/J)(1 + a/m 2) = 1 - 2-1/2[(1 + a2)1/2 + 1]112, 
(44a) 

2(1 + ~mJ'/J)A = 2-1I2m 2[(1 + a 2)1/2 _1]1/2, (44b) 

where a = 21TR Bm 3 (J + ~mJ'). 

Equation (44a) gives a < 0 for all values of R. So as 
long as we restrict our attention to two zeros of ~(k, w) 
(one at Ttl and the second at M -7 (0) for incompressible, 
isotropic and static velocity turbulence, no growing 
modes exist provided that the turbulence spectrum 
makes J(k, K) analytic in the finite complex k and K 

planes. 

Author's note. The reader who is primarily interested 
in the phySics may skip Secs. VI and VII and go directly 
to Sec. VITI. The reader who is more interested in the 
mathematical development should first read Secs. VI 
and VII before reading Sec. VITI. 

VI. UNIOUENESS OF THE SOLUTION TO EO. (33) 
AND A VARIATIONAL PRINCIPLE 

In deriving the above results from Eq. (33) we assumed 
that it possessed only two zeros on the positive real K 

axis at m and M, and we then let M -700. It should be ob­
vious that this procedure can be generalized. 

A. Uniqueness of the solution 

Let ~(k,w) have simple zeros at m 1,m 2, ••• ,mn,M 
with m 1 < m 2 < m 3'" < mn < M on the positive real k 
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axis. Then by analogy with Sec. V we have (as M -) 00) 
.. 

<I>(k,w) = 1- iwk-2 + i1TR2 L) mrJ(k,m;)/<I>'(mi,w). (45) 
i;1 

In Eq. (45) set k = ma (a = 1, ... ,n) with <I>(ma , w) = 0 
by definition. Then .. 

=-i1TR2 L)mrJ(ma,mi)/<I>'(mi,w), 
i 0 1 

(a = 1,2, ... ,n). (46) 

Also by differentiating Eq. (45) with respect to k and 
then setting k = m a we obtain 

.. 
<I>'(ma , w) = 2iwm~,3 + i1TR2 L)mrJ'(ma,mi)/<I>'(mp w), 

F1 

(a = 1,2, ... ,n). (47) 

Consider then the implicatiOns of Eqs. (46) and (47). 
We have 2n equations for the n unknowns <I>'(ma' w) 
which seems contradictory if the ma are specified a 
priori. However, if we regard the ma as arbitrary (ex­
cept for m 1 ), then Eqs. (46) and (47) give 2n equations 
for the 2n unknowns <I>'(ma ,w),m2,m 3 ' "m n and w,all 
of which can then be uniquely determined in terms of 
m 1 • 

Of the many dispersion relations for w = w (m 1) which 
result only those which yield iw = m ~ as R -) 0 are physi­
cally permissible. 

To illustrate the point let us consider in some detail 
Eqs. (46) and (47). Let <I>'(ma,w)ma == ua' Then from 
Eq. (47) we have 

m;ua - mluB = i1TR2 L) mTui(m~J~i - m~J~i)' (48) 
i 

From Eq. (46) we have 

m;ua -m~uB = 2(m; -m~) + i1TR2 L)mTui 
; 

x (m~J~i - mF~i + 2m~Jai - 2mPBi)' (49) 

From Eqs. (48) and (49) it follows that if ma '" m B ' 
then 

2 = - i1TR2 L) mTui(m~JBi - m;Jai)/(m~ - m;). (50) 
i 

Now all the m i and the J's are positive. So from 
Eq. (50) 

u i = iVi with Vi real. 

But if u i = iVi , it follows from Eq. (48) that 

Va/VB = m~/m; (51) 

and that 

~ m~ (m~J~i - mF~i) = 0 (a '" (3). 
i 

(52) 

Equations (50) and (52) must be valid for all values of 
0' and {3 with 0' '" {3. But Eqs. (50) and (52), must be true 
for arbitrary choices of the turbulence spectrum ~ (k) 
which give analytic J. 

Hence Eq. (50) is not valid in general. The only other 
possibility is then ma = m B (all 0', (3). Thus there are no 
solutions to Eq. (33) which consist of more than one 
simple zero at finite m values. 

J. Math. Phys., Vol. 14, No. 10, October 1973 

What about solutions involving double, triple, etc., 
zeros of <I>? 

Suppose there exists a solution to Eq. (33) with J(k, K) 
analytic which consists of (a) m1"" ,m .. being simple 
zeros of <1>, (b) m y +1,'" ,mp being double zeros of <1>, 
and (c) m p+1 ' " being triple zeros of <1>, etc., with alto­
gether N zeros being at finite m values;further let 
there be a last simple zero at k = M. 

Then, as M -) 00, 

(.. J(k,m.) 
<I>(k,w)=1-iwk-2+i1TR2~6m~ , 

~;=1 '<I>' (m;, w) 

+ L) - (K2J(k, K) p 1 a I 
r+1 <I>"(mi,w) aK k=m; 

(53) 

Now <I> must vanish at m = m l' •. m N' <1>' must vanish 
at m r+1> ••• ,mp , <1>" must vanish at mp+1' •• , etc. 

From Eq. (53) the vanishing of <I> gives N equations. 
By differentiating <I> we obtain N further equations. This 
is enough to give a unique solution, for we have 2N un­
knowns [w,m 2" ·m .. ; <I>'(m 1)'" <I>'(mr ); <1>" (m .. +1)··· 
<1>" (mp ); etc.]. But we have more equations available­
for we can differentiate Eq. (53) twice to give p - (r + 1) 
further equations, etc. Thus the system is much over­
determined and no solution exists. Altogether then as 
long as J(k, K) is analytic in the finite domains of the 
complex k and K planes, the only solution to Eq. (33) is 
when <I> has a simple zero at k = m and a second simple 
zero at k = M -) 00. And this solution does not admit of 
growing modes for any form of the static velocity tur­
bulence [which preserves the analyticity of J(k, K)]. 

What about choices of ~(k) which give nonanalytic 
J(k,K) [e.g.,Hk)aknexp(-k) or ~(k)ak2(k2 + l)-a give 
nonanalytic J(k, K) as can be verified directly]? 

In such cases we have been unable to solve Eq. (33) 
analytically, but we have been able to construct a varia­
tional principle which enables solutions to be found, in 
principle. 

B. The variational principle 

ConSider the expression 

L = fo"" dk~CP+(k'W)[CP(k,W) - (1-iwk-2)] 

-R2cp+ (k,w)f
o
"" dKK2J(k'K)CP(K'W)-1~. (54). 

If L is varied extremally with respect to the adjoint 
function cP+ we recover Eq. (33). If L is varied extre­
mally with respect to cp we obtain the adjoint equation 

(55) 

Now multiply Eq. (33) by cp+, Eq. (55) by cp, integrate 
the results over 0 ... k ... 00 to obtain 

2 f: cpcp+ dk + fo"" dk(l - iwk-2)cp+ = 0, 

fo"" dk(l - iwk-2)cp+ - 2R2 fo"" dkfo"" dKk2J(k, K) 

(56a) 

x cp+ (K, w)cp(k, W)-1. (56b) 

Suppose then that we had been able to solve .Eqs. (33) 
and (55). Then upon using equations (56) in equation (54) 
we obtain 

L = O. (57) 
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Thus we can use 

p2 == J
o

oO 

dkcp+ (k, w)[cp(k, w) - (1 - iwk-2)] 

x [f000 dkcp+ (k, w) ~000 dKK2J(k, K)cp(K, W)-~]-1, (58) 

as a variational principle for determining approximate 
solutions to Eqs. (33) and (55) when we are unable to per­
form the integrals analytically. Now R2 > 0, so the 
variational statement for Eq. (58) is that for trial func­
tions cp and cp+ ; we have 

Rep2 ==R2 > 0, Imp2 == O. 

The "boundary conditions" on trial functions to be 
used in Eq. (58) are cp (k -7 co) == 1; cp+ (k -7 co) == 0; 

(59) 

cp (k -7 0) -7 1 - iw/ k2; cp+ (k -7 0) -7 O. Further if cp (k, w) 
is taken to have a zero of degree r at k == m, then cp+ 
has a pole of degree 2r at k == m. 

In view of the complexity of the variational statement 
(58), it is clear that some considerable effort is neces­
sary in order to obtain even an approximate solution. 
However, in view of our inability to solve Eq. (33) direct­
ly when J(k, K) is not analytic in the finite domains of 
the complex k and K planes, such effort may be worth­
while. 

VII. TIME DEPENDENT VELOCITY TURBULENCE 

All the results of Secs. V and VI are based on Eq. (33) 
and thiS, in turn, was derived from Eq. (25) using static 
velocity turbulence [see Eq. (31)]. 

More generally when E(K, n) depends on 0 we have to 
solve 

<l>(k, w) == T/k2 - iw + J E(K, 0)[k2 - (k. K)2K-2] 

x <l>(lk - K I, w - 0)-1d3 KdO, (60) 

where the normal modes of the ensemble average mag­
netic field are given through the dispersion relation 

<l>(k, w) == 0, 

which determines the complex frequency w as a func­
tion of real wavenumber k. 

With 

<l> (k, w) == T/k2+ (k, w), 

equation (55) can be cast in the form 

(61) 

(62) 

iJ!(k w) == 1- iwk-2 + JoO K2 J(k,K(W - 0) dKdO, 
, 0 + K,O) (63) 

where 
+1 

J(k, K, w - 0) == 21TT/-2 J
1 

(1 - fJ.2) Ik + KI-2 

x E(lk + KI,w - O)dfJ., (64) 

with Ik + KI == (k2 + K2 + 2kKfJ.)1/2. 

We have not been able to solve Eq. (63) but we have 
found a variational principle which, in principle, enables 
approximate solutions to be obtained to Eq. (58). 

Consider 

L == J dkdw{cp+(k,w)[+(k,w) - (1-iwk-2)] 

- cp+ (k, w)J K2J(k, K, w - n)dKdOlJl(K, O)-l}. (65) 
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Extremal variation of L with respect to the adjoint func­
tion cp+ gives Eq. (58), while extremal variation of L 
with respect to lJI gives the adjoint equation 

cp+ (k, w) == - k 2iJ!-2 J J(k, K, w - O)cp+ (K, O)dKdO. (66) 

Then by multiplying Eq. (66) by lJI, Eq. (58) by cp+ and 
integrating the results over k and w it follows that 

(67) 

and 

J cp+ (1 - iW/k2)dkdw 

== - 2J dkdwdKdOk2lJ1(k, w)-1cp+ (K, O)J(k, K, w - 0). (68) 

Suppose then that we had somehow obtained solutions 
to Eqs. (63) and (66). Then by USing Eqs. (67) and (68) in 
Eq. (65) we see that 

L == O. (69) 

Altogether then 

p2 == J dkdwcp+ (k, w)[lJI(k, w) - (1 - iwk-2)] 

x [J dkdwcp+ (k, w)[ J dKdOK2J(k, K, w - O)lJI(K, 0)-1 ]]-1 
(70) 

provides a variational principle for obtaining approxi­
mate solutions to Eqs. (63) and (66) for trial functions lJI 
and cp+. The variational statement is 

Rep2 == 1, Imp2 == O. (71) 

Note that if we characterize lJI by an amplitude A, then 

I p21 0 I A I (A -7 0), (72) 

So there must exist at least one amplitude A* such 
that I p21 == 1. 

Then the real and imaginary parts of ware to be 
chosen so that on A == A*, Rep2 == 1, Imp2 = O. 

VIII. REMARKS ON THE DECAYING SOLUTION (44a1 

Here we shall consider in a little more detail the be­
havior of the decay rate (J, and the oscillating frequency 
A,of the mode given by Eqs. (44a) and (44b).15 

From Eq. (44a) we have 

(J == - m 2 + ~m2(1 + tmJ'/J)-1[1 - 2-1/ 2 

x [(1 + ( 2) 1/2 + 1]1/2], (73a) 

A == 2-3/2m 2 (1 + tmJ'/J)-1[(1 + ( 2)1/2 _1]1/2, (73b) 

where CJ == 21TR 2m 3 (J + ~mJ'). 

As m -7 co, J -7 cm-4, J' -4 - mJ, where C is a positive 
constant, so that CJ -7 21T cR 2/rn. 

Then for R ;;:; (m/c)1/2 we have 0 « 1 and then 

(J "" - m B (1 + ~ ( 2) , 

while for R ;2; (m/c)1/2 we have 

(J "" - 2-3/4 m 2 01/4. 

(74a) 

(74b) 

Note further from Eq. (73a) that the decay rate of the 
field is at a rate greater than the free decay rate - m 2 

for all values of the Reynolds number, R. 
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Note also that for any finite Reynolds' number the 
mode is decaying but oscillatory. This is in contrast to 
the situation R = 0 when the mode is purely decaying 
with no oscillatory component. 

We do not yet completely understand the physics under· 
lying this oscillatory behavior. 

IX. DISCUSSION AND CONCLUSION 
A. Detailed comments on the calculation 

Using Kraichnan's direct interaction approximation 
we have set up the singular nonlinear integral equation 
describing evolution of a magnetic field under incom­
pressible isotropic velocity turbulence. For a particu­
lar form of velocity turbulence [i.e., static and giving 
J(k, K) analytic in the finite domains of the complex k and 
K planes) which satisfies Cramer's theorem we have 
given a method of solving the equation. By restricting 
our attention to the solution possessing two zeros (one at 
a finite value of k and the other at a value of k tending to 
infinity), we demonstrated that there existed two normal 
modes of the ensemble average magnetic field. 

One of these modes is oscillatory but degenerative no 
matter where the finite zero of Eq. (33) is placed and no 
matter how large the Reynolds' number. The other mode 
predicts a growing field even in the absence of a turbu­
lent velocity field. It must therefore by excluded on 
physical grounds. 

When the velOCity turbulence is static, but gives rise 
to a nonanalytic J(k, K), we have been unable to solve the 
nonlinear singular integral equation. However, we have 
been able to construct a variational principle which 
enables approximate solutions to be obtained, in principle. 
Unfortunately, the labor involved in using the varia-
tional principle is considerable, but unless a direct 
method can be found for solving the equation when 
J(k, K) is nonanalytic, recourse to such a variational 
principle is inevitable. 

Further, when the velocity turbulence is not static we 
again have been unable to solve the resulting nonlinear 
singular equation. Once again we have found a varia­
tional prinCiple which may be of use in obtaining appro­
ximate solutions if a direct method of solving the equa­
tion is not found. 

We point out that the possibility of incompressible, iso­
tropic, homogeneous and stationary velocity turbulence 
regenerating a large-scale magnetic field is still a wide 
open question. There remain to be investigated the 
cases of (i) nonanalytic J(k, K) for static velOCity tur­
bulence, and (ii) velocity turbulence which is not static. 
We do not yet possess the mathematical tools to investi­
gate these situations. 

We would, of course, be highly interested in seeing 
calculations relating to the above unanswered points. 
Until such time as these computations are forthcoming 
about all we can do is to emphasize that the question of 
whether isotropic velocity turbulence can regenerate a 
large scale field is as wide open now as it ever has 
been. What we have done is two things: First, we have 
shown that for static velocity turbulence which gives 
rise to analytic J(k, K) the answer is that no regenera­
tion is possible; second, we have set up the equations 
that have to be solved when either J(k, K) is not analytic 
or the velocity turbulence is not static. We have not yet 
succeeded in solving them. 

B. General comments on the physics 
The generation of magnetic fields by turbulence has 

had a long history. 
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Batchelor (1950)16 pOinted out that there is a strong 
analogy between the vorticity (w = V x v) of a fluid 
field and an imbedded magnetic field, for the vorticity in 
a hydrodynamic fluid satisfies 

aw. a 
-' = -- (vw. - v.w.), 
at ax.' J J' 

J 

while a magnetic field in a perfectly conducting fluid 
satisfies 

(75) 

aBi a 
- = - (viBj - vjBi ). (76) 
at aX j 

On this basis it has been argued (Batchelor, 195016 ; 
Chandrasekhar, 1950; 19511 7 ; Moffatt, 196118 ) that there 
should be equilibrium between the kinetic energy con­
tained in the small eddies of a turbulent fluid and the 
magnetic energy no matter whether the turbulence is iso­
tropic or not, with 

On the other hand it has been pOinted out (Biermann 
and Schluter, 19511 9 ; Biermann, 19532°; Chandrasekhar, 
195521) that in a perfectly conducting inviscid incom­
pressible fluid the equations admit of an alternative 
symmetry: 

a 
(p + B2 j8n), 

aXi 

(
av. av.) a 

p -' + ~ -' =- - (p + B2j8n), 
at aXj aX i 

where 

Ui = Vi + B i (4np)-1/2, Vi = Vi - Bi (4np)-1/2. 

(78) 

(79) 

The Eqs. (78) and (79) treat Ui and Vi with equal sym­
metry. It has then been argued that it is reasonable to 
expect equipartition of energy between Ui and Vi' and be­
tween the Reynolds and Maxwell stresses of Vi and Bi , 

respectively. Thus in a turbulent system one expects 

no matter how the turbulence is distributed (i.e., no 
matter whether it is isotropic or not).22 

(80) 

And in any event whichever argument appears more 
plausible to the reader, the main pOint is that a seed field 
should grow to a finite value. 

Opposing these arguments are the mathematical re­
sults of first order smoothing theory and the diffusion 
argument (parker, 197223). 

The results of FOST refer only to small Reynolds 
number (R « 1), and in this limit isotropic turbulence 
does not regenerate a large scale magnetic field (al­
though it may still regenerate a completely turbulent 
magnetic field-this problem has not yet been solved). 

The diffusion argument of Parker (1972) notes that 
Eq. (76) implies that the magnetic field is frozen into the 
fluid and so it is dragged around by the turbulence. It is 
diffused by the chaotic, jumbling motion just as smoke 
diffuses in the turbulent city air. This argument assumes 
only that there is a largest eddy size so that magnetic 
fields of larger scale cannot have energy transferred 
to them from even larger scale eddies, for there are 
none. 
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There are several points we do not understand in the 
solution of the Kraichnan DIA equations. First, we do 
not know what the physical reason is for the fact that 
both the growing and decaying modes are propagating. 
Second, while we are guaranteed that the ensemble of 
turbulent systems described by the Kraichnan DIA 
equations is phYSically realizable, we are not guaranteed 
that it describes the ensemble system that Nature pro­
vides. 24 

We should, perhaps, pOint out that there does not 
appear to be a better statistical description currently 
available than Kraichnan's DIA equations. Accordingly 
they are the best that we can do at the present time. 

We believe that the DIA equations represent a power­
ful method of handling turbulent kinematic dynamo pro­
blems. In particular, for example, it has not escaped our 
attention that the inclusion of turbulent velocity posses­
sing a net helicity is a problem which can now be 
tackled with complete generality using the Kraichnan 
DIA equations. We shall discuss this problem in the 
next paper in this series. 
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The perturbation method for the nonlinear. slow modulation of a rapidly oscillatory plane wave, 
which was given in the first paper of this series for a class of systems of nonlinear partial differential 
equations, is now established for a general system of nonlinear integro-partial differential equations. 
It is shown that the system can be reduced to simpler nonlinear equations which in certain cases 
become the nonlinear Schriidinger equation. The reduction proceeds as in the first paper, and the 
result is then applied to nonlinear optics. 

1. INTRODUCTION 
Using a multiscale perturbation method, Taniuti and 

Washimi 1 have shown that the nonlinear modulation of a 
quasimonochromatic whistler wave propagating in a 
cold plasma can be described by the nonlinear Schro­
dinger equation. In the first paper (I) of this series,2 
it was demonstrated that the perturbation method of 
these authors applies to a wide class of nonlinear par­
tial differential equations which are linearly dispersive 
and that in the general case the nonlinear modulation 
can be governed by a nonlinear equation of the Schro­
dinger type. Also, an intuitive, entirely different deriva­
tion of the nonlinear Schrodinger equation was given by 
Karpman and Krushkal 3 for a quasimonochromatic dis­
persive wave with frequency depending on a single non­
linear parameter-the slowly varying amplitude. 
Furthermore, conspicuous properties of the nonlinear 
Schrodinger equation such as the soliton-soliton inter­
action were first observed numerically by Yajima and 
Duti,4 and recently it was shown by Zakharov and 
Shabat5 that the nonlinear Schrodinger equation is solv­
able analytically. Hence, it may be stated that for a 
general set of partial differential equations of the dis­
persive type, the characteristic behavior of the non­
linear wave modulation can be found in the asymptotic 
way. 

In the following sections of this paper, we shall con­
sider a more general system of equations which are 
integro-differential, and it will be shown that a similar 
reduction to a nonlinear equation of the Schrodinger 
type is possible. This generalization was motivated by 
recent developments in nonlinear optics. For illustra­
tion, let the nonlinear Maxwell equation for the electric 
field vector E be given by 

where nand 01 are real constants. This equation can be 
brought into the matrix form (1.1). [Here (1.1) denotes 
Eq. (1) in the first paper, I, of this series. In what 
follows, similar notation will be used for any equation 
in 1.] However, in this case, the linear dispersion rela­
tion (1.4) becomes 

w2 - (c jn)2k2 = 0; 

consequently, there is no dispersion and our method is 
not applicable. [Note that the condition (1. 4') is not valid 
for any III '" 1]. Rather, the above equation should be 
regarded as a special case of the system of equations 
considered by Taniuti and Wei 6 for long wavelength, and 
it can be reduced7 to a single nonlinear equation of the 
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form, 0 qJ JOT + (iqJ 0 qJ jo ~ == 0, where (i is constant. 
(Here we note that the equation can be solved exactly 
by means of the method of characteristics, but because 
of characteristic crossing, the waves break after a finite 
time. B•9 ) This implies that our method in I does not apply 
to nonlinear opt.ics, if (color) dispersion in the linear 
approximation is neglected. However, physically speak­
ing, as waves steepen, color dispersion does become 
effective in preventing characteristic crossing and 
would allow us to describe behaviors of longer time 
scales. In order to take into account dispersion, we 
may consider coupling between the Maxwellian equa­
tions and a polarization field which is assumed to be 
governed by a set of differential equations. For exam­
ple, Dstrovskii10 modeled the polarization field by an 
anharmonic oscillator coupled with the electromagnetic 
field. Our method in the first paper can be applied to 
his model and will lead to a similar result, and appro­
priate modifications will then enable us to apply it to 
more realistic models. (Also the method could be 
extended so as to be applicable to systems with relaxa­
tion,ll such as those involving envelope shocks12). 
However, as an alternative way to take account of the 
dispersion, we may introduce a general dielectric ten­
sor which is nonlocal in the coordinate space so that 
the electric displacement is given as a convolution of 
the dielectric tensor and the electric field vector .13 
Then, the Maxwell equations become integro-differential 
equations. This leads us to consider a general system 
of integro-differential equations. In the next section, 
a simple model equation is considered to explain the 
outline of the general theory which will be developed in 
Sec.3. Then the general theory is illustrated in Sec. 4 
by an application to nonlinear optics. 

2. ILLUSTRATION BY MODEL EOUATION 

To begin, we first consider the following integral 
equation as a model equation: 

J w(x 1' t1)u(x - xl' t - t 1)dx1dt1 

+ J X(x 1, t 1;x2, t2)u(x - xl' t - t 1) 

x u(x - x 2' t - t 2)dx 1dt1dx2dt2 = O. 

Here u is a scalar, unknown, real variable of the 
space and time coordinates x and t. with the first term 
representing a linear response and the second a non­
linear one. Consequently, w and X may be regarded as 
a linear and a nonlinear dielectric function, respectively, 
and it will be assumed that w and X are real and fall 
off sufficiently rapidly as their arguments I x 1 I, I t 1 I , 
IX21, I t21 go to infinity, while the integration is carried 
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from - co to + co for each argument. For infinitesimal 
disturbances, we have the linear integral equation, 

which immediately yields the dispersion relation 

w(k, w) = 0, 

where w is the Fourier transform of w, 

J w(x, t) exp[-i(kx - wt)]dxdt. 

Corresponding to the condition (I. 4'), we assume 

w(Zk,lw) '" 0 for Ill'" 1, i.e., for It I == 0, 2, 3, ... , 

and consider the wave modulation given by Eq. (I. 5), 

00 

u=L; L; EaUz(a)(~,T)ZI' 
a=1 1=-00 

Here the notation is the same as that of I, i.e., ~ = 
E(X - M), T = EZt, A = ow/ak, and ~ stands for 
exp[il(kx - wt)]. Then, Taylor-expanding u(x - xl' 
t - t I ) with respect to the slow variables ~I and TI and 
integrating with respect to x 1 and t 1 gives the following 
expression for the linear response: 

J w(Xl' tI)u(x -xl' t - tI)dxldt i 

[

_ . E dWz aUz(a) . EZ aWL auz(a) 
= L; L; E a wlu(a) - z - - -- + t - - --

a I 1 dk a ~ low aT 
_ ~ EZ (dWI _ dZw aWL) aZul(a) + ... J~. 

2 lZ dk dkz aw a~2 

In deriving this equation we have used the following 
identities and notations: 

aw == aw I . 
aw a ... , w(k.w}=O 

Similarly, for the nonlinear response, we have an 
expansion in powers of E, which begins with order E2. 

Combining these two expansions, one sees easily that 
the terms to first order in E yield 

i.e., uz' 1) = 0, if III '" 1, while for It I = 1 the equation 
is satisfied automatically so that u± 1(1) remains un­
determined in this order. However, also' in the second 
order, the coefficient of Z±I of the linear response 
vanishes identically because of the dispersion relation 
and its derivative, dW±I/dk = O. Since the nonlinear 
response in this order is given by the products of the 
first order terms uF) and uSI), it does not contain the 
factors Z± l' Hence for III = 1, the second order term 

J. Math. Phys., Vol. 14, No. 10, October 1973 

does not appear. However, for III '" 1, we have equa­
tions to determine u/2 ) in terms of uV), i.e., 

u
2
(2) = - (X

ll
/W

Z
)U I(l)uP), 

u~~) = - (X_I._I/w_2)u~pu~P, 

uo(2) = - (2Xoo /wo)luP)12; 
otherwise, 

u
l
(2) = 0, 

where 
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Xu == J X(x v t1; x Z' tz)zt(x l' tI)Zz~(x 2' t2) dx ldx 2dt Idtz• 

(Note that u~1) and u~V are not yet determined.) 

We now proceed to third order in E. For the coeffi­
cient of Z 1 of the linear response, it is again readily 
seen that the coefficients of u 1(3) and u 1(Z) vanish, and 
we have 

aw au l(1) w" aw a2up) 
---+-----
aw aT 2 aw a~2 

while the nonlinear response yields 

J X(x l' t 1; x 2' t2 ){uP )(~, T )u~P(~, T )[Z~(x l' t1 )Z':1 (x 2 ' t2 ) 

+ Z;(x2 ,t2 )Z_*I(X 1,tI )] 

+ uO(2)(~, T)UP)(~, T) [Z~(XI' t I )Zr(x2 , t2 ) 

+ Z~(X2' tz)Z;(xl' t1)]}dx1dtldx2dtz 

= [- (X2 .-1 + X- I,2) (Xl,l/w2 ) 

- 2(XO,l + XI,o) (Xoo/wo)] luP)IZuP)· 

Therefore we obtain a nonlinear equation of the 
Schrodinger type 

au (1) w" a2 u (1) 
i _1_ + _ 1 + Qlu

1
(l)I Z u

I
(l) = 0, 

aT 2 a ~z 
in which Q is given by 

Q is, in general, complex; however, if the linear and 
nonlinear dielectric functions wand X are even with 
respect to their arguments, the Fourier transforms 
wI' XI,I' are real, and consequently Q becomes real. 

Though we have considered the quadratic nonlinear 
response, in nonlinear optics the nonlinear response is 
usually cubic and takes a slightly different convolution 
form, 

J X(xl' t1 ;xZ' t2 ;x 3 , t 3 )u(x - Xl' t - t I ) 

xu(x-x I -x2,t-tI -t2 ) 

xu(x-xI-XZ-x3,t-tI-t2-t3) 

x dxldxzdx3dtldt2dt3' 

The reduction for this case is essentially Similar, 
and if X is even, Q is real. 
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3. GENERAL THEORY 

The extension to the system of integro-differential 
equations can be achieved by incorporating the deriva­
tion for the single integral equation into the method in I 
for the system of differential equations, and it is antici­
pated that reduction will yield a nonlinear equation of 
the same Schrodinger type. [The coefficient of the 
second order derivative p in Eq. (I. 16) can be reduced 
easily to td2 w/dk 2 by a simple, algebraic manipulation, 
which was first pointed out by Asano.pl,14 

In the following discussion, in order to include the 
Maxwell equations in a dispersive medium as a special 
case, we shall consider the followi>l.g system of equa­
tions for n real unknowns U l' u2 ' ••• ,un' 

oF~ + G = O. 
ox~ 

(1) 

Here, the Greek superscript p. runs from 0 to 3, the 
x~' s are the space-time coordinates, namely, xO denotes 
time t while Xl, x2, and x 3 are the space coordinates, 
and a dummy index will be used throughout unless 
otherwise stated. The F~ 's are n-component column 
vectors (j~, i = 1,2, ... ,n) given by 

x (dx )4(dx )4 + ... + J ... J T<.~N (x···x) I 2 .. >,J, ••• ,s I N 

N 

x Uj(x - Xl)'" Us (x - L; x) (dx l )4 •. . (dxN )4. (2) 
u~ I 

Here K~Y (r = 1, ... N) is a real tensor of rank r + 1 
and its arguments x l' x 2' ... ,Xy denote that K~ y depends 
on the r-space-time points,x1(x~),x2(x~)", .,xy(xf); 
also, ~(x - Xl - x 2 '" - xm ) denotes that uj is a func­
tion of the four variables x~ - x~ - x~ - ... - xl:, 
(p. = 0,1,2,3); (dx

T
)4 is the four-dimensional volume 

element dXy0dx/dx!-dxT
3; the domain of integration ranges 

from - co to + co for each variable; and the dummy 
indices i,j, ... , s, run from 1 to n. Equation (2) will be 
symbolically designated as 

N 

F~ = L; K~Y*UT, 
r=l 

where U is a column vector of the n components 
U l' U 2' ... , Un' and G is given likewise, 

N' 

G = L; Mr* UT, 
r=l 

(2') 

(3) 

in which MT is a real tensor of rank r + 1 and depends 
on the points x l' x 2' ... , xy • It will be assumed that all 
the tensors K~T, MT damp out sufficiently rapidly as 
their arguments go to plus and minus infinity; i.e., 

J ... J K~T. (xu)P. (dx 1)4 ••• (dxy )4 (r= 1, 2, ... ,N) 

and 

are bounded for p = 0,1,2, .. '. Also, necessary analy­
ticities with respect to their arguments will be assumed. 
We now mtroduce a crucial assumption for the Fourier 
transform of the tensors K~ 1 and M1: 
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Let k~T and i:1{ be the Fourier transforms of K~r 
and MT, Le., 

Define the matrix "'! by 

"'! = ilk~k~l + i:1/. 

Then, we assume that the equation 

detW± 1 = 0 (4) 

admits at least one real root k O for a given set of the 
vectors k(k 1 , k 2 , k 3 ); and, moreover, when (4) is valid, 

det"'! ... 0 for Ill ... 1, (5) 

i.e., for 1 = 0 and for any integer 1 which is not equal 
to ± 1. 

It is readily seen that Eq. (4) is the dispersion rela­
tion of the linearized system of (1), corresponding to 
Eq. (I. 4), while the inequality (5) corresponds to the 
condition (I. 4'). 

Following the expansion method used in I, we consider 
a solution about U = 0: 

(6a) 

00 

u(a) = L; L't(a)(~, T) exp(ilk~x~). (6b) 
/ =-00 

Here E is a small parameter, k~ is a set of the fre­
quency and the wavenumber satisfying Eq. (4), and T and 
~ are stretched coordinates introduced by 

T = E2 t, 

~ = Ell~X~, 
where P is defined as, 

kO=k.
okO 

ok (= t k; Ok
O
), 

;=1 ok; 

(i = 1,2,3). 

Here we note that 

kl-'xl-' = k ~ (kl-'x~). 
ok 

Then we have 

K~l * U = L; L; EaKI-' 1 * q(a) exp(ilk· x) 
a I 

(7a) 

(7b) 

(Ba) 

(Bb) 

(Bc) 

= L; L; Ea{k~l + [Ek~l ~ + E2 (k~l ~+kl-'l~) 
a= 1 i . Z 1.,1 a ~ T,I 0 T 1.1.,/ a ~ 2 

+ ... JL't(a)(~'T)} exp(ilk'x) 

(9) 
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in which kt~, etc., are given in Appendix A, and k • x 
denotes kflXfl . 

The reductions of other terms KflT * UT go parallel; 
for example, 

Kfl2 * lJ2 = ~ ~ Ea+6Kfl 2 * u;(a)U;,(6) exp[i(l + l')k· x] 
a.6 1.1' 

= ~ ~Ea+6{Kfli';l'U;(a>U/6)+ E [iq.~+I':/,(ait) U;16) 
a.6 1.1 

a u,.,(6») - 2 a u,.,(B) ] 
+ u;(a) --ar- + Kf+I';'.I' u;<a) ~ 

+ ... } exp[i(l + l')k. x] 

== ~ (Kfl 2 * lJ2)/.I'· exp[i(l + l')k' x] 
1.1' 

(10) 

in which Kf+~':/' etc. are defined in Appendix A, 

Kfl 3 * U3 = ~ ~ Ea+6+Y[Kf+~'+I"'I'+I"'I" 
o:.B.y. l,Z',Z" . . 

x u;(a)u,. ,(6)u,. ,,(y) + ... ] exp[i(l + I' + 1 ")k • x] 

== ~ (KI'3 * U3)11' I" exp[i(l + I' + l")k' x], (11) 
l.l',l" .• 

where Kf+~'+I";I'+I":/" is given in Appendix A. 

Similarly, replacing KY 1, etc., by ill, etc., defined in 
correspondence to equations in the Appendix A, we have 
the expression for C. 

In view of Eqs. (9), (10), (11), etc., one can perform the 
differentiation with respect to Xfl in Eq. (1): 

aFfl = ~ (ilkfl ) (Kfll * U)I exp(ilk· x) 
axfl z 

+ ~ i(l + l')k fl (Kfl2 * U2)11' exp[i(l + l')k· x] 
1.1' 

+ ~ i(l + I' + 1")kfl(Kfl3 * U3)Z.I'.I" 
l,l',l" 

x exp[i(l + I' + l")k' x] + ... 

+ ~ (Ekfl ~ + E20 o~) . (Kfl l * U)z . exp(ilk. x) 
I a~ fl aT 

Then, equating the various powers of E of the same 
harmonics to zero, we get for O(E) 

(ilkflKrl + Ml)u,.(l) = 0; 

for O(E 2) 

(12) 

(13) 

(ilkflKfl + Ml)U;(2) + ilkflKtl aa~ U;(l) + kIJ aa~ (KflU;<l») 

+ ill.1 }~ u,.(l) + F (ilkflKf}, + M?!,)u,.~r.>u,.,(l) = 0; 

and for O(E 3) 

(ilkflKyl + Ml)U;(3) + (ilkflKt,l + kflKfl + ivll.zl aa~ U;(2) 

+ [ilkflKfll ~ + ilkflKfll ~ + kIJKfl l ~ + K9l ~ 
T.! aT tU a~2 t.! aP ! aT 
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+ Ml - + Ml - [l,(l) 
(

- a - 0
2 
)] 

T.I aT t.t.l o~2 I 

+ P ilkfllq;HU;~~)U;Jl) + U;~f.>u;,(2») 

+ F [ilkflKt./~/,(u,.~r'~tu,.,(l) + U;~pu,.~P) 

+ Kfl!'U;~Pu,.,~P] + F kflKf},(u,.~f,~,U;,(l) 
+ U;~pu,.,(P) + ~ M?I'(U;~~)u,.P) + U;~pu,.,(2») 

. l' . 

+ 4 [Ml.z;I,(U;~r,~,u,..o) + U;~PU;,~P) 
I 

+ il/~t.I'u,.~pu;,~P]+ ~ ilkflKr.r'+I"·I"U;~P-I"U;P)U;.P) 
l'l" . . 

+ ~ iI!~/'+!"'I"U;~P-I"u,.P)U;..o) = o. 
l'l" . . 

(For U;,(P and U;~Pt' the subscript ~ denotes partial 
diff erenhation.) 

By means of Eqs. (4) and (5), it is readily seen that 
Eq. (13) for O(E) results in 

u,.(l) = 0 for III '" 1, 

Ul(l) = cp(l)(~, T)R, 
(14) 

where cp( 1) is a scalar function of ~ and T to be deter­
mined later and R is the right eigenvector given by 

WlR = 0, (15a) 

with its complex conjugate 

(15b) 

The corresponding left eigenvector Land L * intro­
duced by 

will also be used. 

(15c) 

(15d) 

Then, substituting Eq. (14) into the equations for O(E2), 
we have, for 1 = 1, 

(16) 

The second term on the left-hand side of this equation 
can be reduced further. That is, using Eq. (8c), we find 

k~W - 'PKfll +ikflk~Kfll +kl..il l 
ok 1 - z 1 ok 1 ok 1 

= ill R.i. l + ik IJ J Kfll(_ikxl)e-iRxld4xl 

+ J Ml(-ikxl)e-ik~ld4xl 
'-flVIJl . fl-fll -1) = z(k .n:l + zk Kt . l + M t •l • 

Hence Eq. (16) can be written as 

. (2 ( 0 ) ocp(l)_ ZWlU1 )+ k,akW l R----ar-- O. 

Multiplying this equation by L from left yields the 
compatibility condition 

( 
0 ) ~_ L k ok WI R o~ - 0, 

(17) 
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which is satisfied automatically by means of the relation 

Since 

[k(a lak)W I]R = k(a 10k) (W lR) - W1k(a lak)R 

= - W1k(a jOk)R, 

Eq. (17) reduces finally to 

( (2)_.! ~ ~)-WI U1 i k ok R a ~ - o. 

Therefore we obtain 

U(2) = cp(2)R +.! (k ~ R) ~, 
1 i \ ok a ~ (18) 

where cp(2) is also a scalar function of ~,T and will be 
determined in a higher order approximation. 

The other equations for O(E2) yield UP) (Ill ... 1) in 
terms of cp(1). 

For 1 = 0, we have 

WOUO(2) + M5',1 U~p UP) + M5;-1 UP) USl) = 0, 

which gives 

Uo(2) = - WQl(M5:1R*R + M5;_IRR*)lcp(1)12. 

For 1 = 2, we get 

W2UP) + (2ikIJK2~r + M~;I)UF) UP) = 0, 

i.e., 

where cp(1) is written as cp, and likewise for 1 = - 2 

(19) 

(20) 

U5i) = - W=~(-2ikIJK!:l_1 + M~2;-l)R*R*cp*2, (21) 

while, for Ill> 3, Uz(2)'s vanish. 

Introducing these results into the equation of O(E 3) 
for 1 = 1, we obtain 

W U(3) +.! (k~ WI) ~ U(2) + (iklJKIJI + KOI + Ml ) ~ UCl) 
IIi \' ok a ~ 1 T.l 1 T.l aT 1 

+ (iklJKIJI + klJKlJ1 + Ml ) £ u(1) 
g.1 t.l tt.I a ~2 1 

+ (ik lJ K 1q + Mtl)U0(2) UP) 

+ (iklJK.t.J + M~:o)UP) Ud2 ) 

+ (ikIJKt:_21 + M~;_I)UP)USl) 

+ (ikIJKt;; + Mt2)USl) UP) 

+ 6 (iklJK.t.?"I" + MI'I"I")Uf;lUzf..P,Uz,,o) = 0; (22) 
l'l" , • . , 

by means of Eq. (14), the nonvanishing terms in the sum- I 

FO = Fl= 
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mation of the last term are those for (l' = 0, l" = ± 1) 
and (l' = 2,l" = 1). 

Multiplying Eq. (22) by L from left, we obtain the equa­
tion for cp (see Appendix B), 

am a2m i :=. + p ::........::t:. + Q I cp 12cp = o. 
aT a~2 

(23) 

Here, P and Q are given by 

_ kim a2 k O 
P - - -2- ok-ok ' (24a) 

J m 

[( . - 2 - 2 ) -1 (- 2 * - 2 *) Q = L zkIJKt;I + M 1;1 Wo MO;IR RR + MO;-IRR R 

+ (ikIJKt:& + MtO)RW(?(M5;IR *R + M5;-IRR*) 

+ (ik IJ Kt;_21 + Mt_l)W2l(2ikIJKl:r + M~;l)RRR* 

+ (ikIJKN + Mt2)R*W:l(2ikIJKir + M~;l)RR 

( . - 3 - 3 ) * - tkIJKI~O:l + M 1:O:l RR R 

- (ikIJKt;«:_l + Mr;O;-l)RRR* 

- (ikIJKI~l.l + Mr'2-!)R*RR]/(L aWl R). (24b) 
, , , , \ ako 

4. APPLICATION TO NONLINEAR OPTICS IN 
LOSSLESS MEDIA 

Consider the Maxwell equations in Gaussian units, 

laB car + v x E = 0, 

.! aD _ v x H = 0 
c at ' 

(25a) 

(25b) 

and assume that the electric displacement D is related 
to the electric field vector E by the equation13.l5 

00 00 

+ 41T fff dt l dt2dt 3 fff dx l dx2dx3 
-00 -00 

x XijkZ(Xl'x2,x3;tl't2,t3) 

x EJ(x - xl' t - tl)Ek(x - Xl - x2' t - tl - t2) 

x Et(x - Xl - x 2 - x 3 ' t - tl - t2 - t3), (26a) 

while the magnetic inductance B is related to the mag­
netic field vector H by 

(26b) 

Here, Eij(X, t), X ijkZ (xl , X2' x 3; tl' t2, t3) are components 
of tensors, and /-10 is the magnetic permeability, assum­
ed to be a scalar constant. For Simplicity, we shall 
assume further that Eij is symmetric, i.e., Eij = Iji' 
Introducing FIJ by the equations 

(27) 
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one can rewrite Eqs. (25) in the form of Eq. (1) (with 
G = 0), 

_O_FIl = O. 
OXIl 

The equations 

V'D=V~B=O 

(28) 

(25c) 

are imposed as the subsidiary conditions: It is easy to 
prove that they perpetuate if they are valid initially. 

Let the column vector U be given by 

U= == (29) 

Then the tensors KII"'S introduced by Eq. (2) take the 
forms 

(I-'O/C)Eji(X) 0 

K?l(x) = 
0 6(x)/c 

0 0 -1 

0 0 0 0 

1 0 0 

K3 1 (x) = 
0 0 1 

0 0 0 0 
-1 0 0 

l-'oE~kO/c 0 0 

0 l-'oE~kO/c 0 

0 0 l-'oE~kO/c 
W l = i 

0 - k3 k2 

k3 0 - kl 

- k2 kl 0 

where i~ = f Ed exp(ikx) (dx)4, and 

detW == - ~ (kO)2 - k2 ~ (kO)2. (
I-' Ed )2 I-' Ed 

1 c2 c2 

Consequently, detW 1 == 0 yields 

(tJoEf/ c 2 ) (kO)2 == k 2 • 

6(x), 

0 

- k3 

k2 

kO/c 

0 

0 

(33') 

(34) 

Isotropy implies that i1 depend k2 ~d kO• In par­
ticular, without temporal qispersion, Ef is a function of 
Ikl only; hence in this case Eq. (34) can be solved ex­
plicitly to give 

(34') 
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0 o 0 

0 0 o 1 

0 -1 0 

KjJ1(x) = 6(x), 

0 0 0 

0 0 -1 0 / 0 1 0 

o 1 0 

0 -1 0 0 

o 0 0 

K~l(x) == 
') 

6(x), 

0 -10 

1 o 0 0 

0 o 0 
(30) 

K;,y,,3 == (41rl-'o/C)Xjj"l for I-' = 0,1 :$ i,j, k, 1 :$ 3, 

== 0 otherwise, (31) 

whereas if r is not equal to 1 or 3, the KW' s vanish, 

KIl" == 0 for r ;" 1,r ;" 3. 

Because of the symmetry of Eij , we have 

(30') 

Hereafter, we consider an isotropic medium so that 

Ejj == Ed 6ji , Ed(Xl,t l ) == Ed(-Xl'-t1 ). (32) 

Then W 1 == ikll K~ 1 is represented by 

k3 -k2 
0 kl 

- kl 0 

0 0 
(33) 

kO/c 0 

0 kO/c 

In the remainder of this section, a lossless isotropic 
medium will be considered, and the temporal dispersion 
may not be neglected. Then, without loss of generality 
we may assume that if > 0 so that Eq. (34) gives at 
least one real kO for any real k, and in addition that 
if is not constant but depends on k and kO to ensure the 
condition 

deUVz ;" 0 for III ~ 2. 

(In this regard, linear dispersion is essential for the 
application of our method of solution.) 

Since G, and consequently Mil", vanish identically, 
Wo also vanishes identically; hence the condition (5), 
deUVz ;" 0, is violated for I = O. (As will be seen later, 
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however, this causes no trouble because of the cubic 
nonlinearity, KJJ2 = 0). In an isotropic medium, we may 
assume without loss of generality that kl = k2 = 0; 
hereafter, for simplicity, we put Ikl = k3 > O. Then, 
the eigenvectors for the eigenmode (34) can be obtained 
easily. As is shown inEq. (33'), the state is doubly 
degenerate, and there exist two linearly independent 
eigenvectors, 

k3 0 

0 k3 

0 0 
(35) Rl = R2 = 

J.loiikO /e 0 

- J.loiikO /e 0 

0 0 

Since WI is symmetric, the corresponding left eigen­
vectors are given by 

(35') 

where the superscript T of Rl and R2 designate the 
transpose. {Note that the degeneracy corresponds to that 
of [J.loiik02/e 2 - k 2]2 in Eq. (33') and does not corres­
pond to that of Eq. (34), which is in general a transcEm­
dental equation for k O and may admit an infinite number 
of roots. Physically, it represents the sense of polar­
ization.} 

From (35) and (35'), we have 

(L1 0 R l ) = (L2 0 R2 ) = k~ + (J.lFVe2)k02 = (1 + J.loii)k~, 

(36) 

and 

(Ll °o:OlRl) = (L2 ::01R2) =iJ.l:i
f 

(
2 +:0 oii) k~ 

Ei oko ' 
(37) 

in which 0 W l/okO is partial differentiation with k3 kept 
constant. 

We now evaluate the nonlinear effect. Since an iso­
tropic medium is being considered, it is consistent to 
assume for X ijkl that 

Xijkl (11'12,13) 

= XO(11,12,13)(l'>ij l'>kl + I'>ikl'»l + I'>ill'>k) (38) 

(1 ::s i,j, k, 1 ::s 3). 

Then noting that R* = R, and omitting the subscripts 
of Land R, one has 

L(ikJJKt:O~lRR*R + ikJJKt:o~_IRRR* + ikJJKt:2~lR*RR) 

= 121TikO(J.lo/e) [Xo (1,0, 1) + Xo (1,0,-1) 

+ Xo(l, 2, 1)] (L'R')2, (39) 

in which L' and R' are defined by the equations, 

(L'). = , { 
(L)i 1 ::s i::s 3 

, 0 4::si::s6 
(39') 

(R'). = . 
{ 

(R) i 1 ::s i ::s 3 

, 0 4 ::s i ::s 6' 
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consequently from Eqs. (35), (35') it follows that 

L' oR' = k~. (39") 

Using Eqs. (37), (38), (39), and (39"), we have 

L(ikJJKt:O~lRR*R + ikJJKt:o~_IRRR* 

+ ikJJKl"'~'IR*RR) I(L oWl R) 
, , :; ~ okO 

121T kOk~ _ 

= ii (2 + kO (oii/okO ) if) [Xo]· 
(40) 

,!!here [X ] stands for Xo(l, 0,1) + Xo(l, 0, -1) + 
Xo(l, 2, lY. On the other hand, by means of the cubic 
nonlinearity, the KJJ2 vanish and hence, in Eq. (24a), the 
terms containing Wi? and Wi also vanish. (We thus 
find that detWo = 0 does not cause trouble.) Therefore, 
it is readily seen that Q is given by Eq. (40), and we 
obtain 

. ocp k~ o2ko o2cp 121T kOk~ 
z - - - -- -- - - -----,,,--=.--_=__ 

OT 2 ok~ o~2 it (2 + kO(oif/okO)ii) 

x [:Xo] I cp 12cp = O. (41) 

If the temporal dispersion and the dispersion in the 
nonlinear polarization are neglected (i.e., [XO] = 3X), 
Eq. (41) reduces to 

i - + - - -=- + 181T -=- X 11/1 I 21/1 = 0, 01/1 1 02w 021/1 ( w) 
aT 2 Ok2 0~2 E 

(41') 

in which k3' kO, if are denoted by k, -w, i, respectively, 
and k3CP = Eq) by 1/1, while I~ denotes E[x3 - (ow/ok)t]. 
Equation (41 ry is identical with that derived by Karp­
man's3 method, in which the dispersion relation is given 
by 

Here we note that under the condition I Wo I == 0, even 
if the nonlinear Schrodinger equation is derived as 
above without ambiguity, speCial considerations are 
required to determine Uo(a). Since we are considering 
the nonlinear modulation of the wave Uf!)e ikx + com­
plex conjugate, Uo(1) may be equated to zero as a physi­
cal requirement. In order to determine U 0(2), we must 
use the equation of third order for l = 0, which, in this 
case, becomes 

and hence yields 

provided that det I kJJ Kl) 11 does not vanish, 

[J.loig O~o /e)2 - k2] J.loig Olo /e)2 ;r 0, 

that is, 

ig ~ 0 and k02 ~ e 2k2/J.loig. 

(42) 

(42') 

(43) 

Consequently, when the condition (43) is valid and U
O
(2) 

vanishes at a boundary, say x --t (Xl, Eq. (42') gives Uo(2) = 
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o for all time. In higher orders, the equation of the 
order of €IX+l for 1 = 0 will allow us to determine UO(~)' 

It may be of interest to note that the latter condition 
of (43) implies that if(dw/dk)2 - c 2 /~oEg R: O(E), we 
might encounter a different case in which a slow (d.c.) 
mode coexists with the carrier wave. 

We also remark that the coefficient Q of the non­
linear teEm of ECl: (41) becomes infinite if 
2 + kO(a€~/OkO)/€1 = 0, namely, that)f there_ exists a 
wavenumber k which makes 2 + w(a€~/aw)/€~ R: O(€), 
the present asymptotic expansion is not valid at this 
wavenumber and a markedly different solution may be 
expected. [Note that this singularity corresponds to 
L(aW1 /Ok O)R = 0]. 

Finally, we mention that if KIl2 does not vanish, in 
other words, if a quadratic nonlinear polarization exists, 
Q depends on UO(2). [Note that the terms with Wil in 
Eq. (24b) must be given in terms of Uo(2).] On the other 
hand, U 0(2) is determined by an equation corresponding 
to Eq. (44) which, however, contains extra terms depen­
dent on K1l2. Therefore, in general, we shall have to 
consider a coupled system of equations for cp, cp *, and 
U

O
(2). 

APPENDIX A: DERIVATION OF EQS. (9), (10), AND (11) 

Kill * U = L; L; €IXKlll * lJ,,(IX) exp(ilk· x) 
IX 1 

= L; L; €IX f Klll(xl)Di(IX)(T - TV ~ - h) 
IX 1 

exp[ilk. (x - x l)](dx 1)4 = L; L; €IX f Klll(x 1 ) 
IX 1 

X u,,<IX)(~, T) exp[ilk' (x - x l)](dx 1)4 

= El P €IX{R¥l + [€KN aa~ + €2 (Ka + K,U ::2) ] 
+ ... } Di(IX)(~, T) exp(ilk • x), 

where Kt1, etc. are defined by 

Kf.l = f (-kx 1 )Klll exp(-ilk 'x1)(dx1 )4, 

Ky1 =-.1.. f (kx )2Klll exp(-ilk.x1)(dx1)4, 
't.1 21 1 

Kfl = f(-t l )KIl1 exp(-ilk 'x1)(dx1)4, 

K~.1 = f t1(kuxf)KIl1 exp(-ilk.x l )(dx 1)4. 
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x exp[-i(l + 1 ')k • xl - il'k· x 2](dx1)4 (dx 2)4, 

Kt~l~l';l' = ff (-kX1)KIl2(x1,x2) 

x exp[- i(l + l')k. Xl - it'k • x2] (dx 1)4(dx 2)4, 

Kr+~':',l' = ff (-kx2)KIl2(xl'x2) 

x exp[- i(l + l')k' Xl - il'k . x 2](dx 1 )4(dx 2)4 ... , 

R¥+~'+l":l'+l":l" = fff KIl3(xl'X2'X 3) 

x exp{- i[ (l + l' + 1 ")k • x 1 

+ (l' +1")k'x2 +l"k·x3]}(dx1)4(dx2)4(dx3 )4. 

APPENDIX B: DERIVATION OF EOS. (23). (24a), AND 
(24b) 

Noting that 

- a -Kill =-i _KJl.1 
T,l ako 1.' 

- a -MT11 = - i -M1, 
, ako 1 

KIp = - i - ikll K~ 1, - (a) -
ako 

one can rewrite the coefficient of au1(1)/aT in Eq. (22) 
as follows: 

ikllj(p.1 + ~1 + M1 = - i _a_ (ikllKlll + Ml) 
~1 1 ~1 ako 1 1 

. a W =-t - l' 
ako 

where a /ak O is differentiation keeping k constant. Simi­
larly, using the relations 

Ky1 = .!.(-k-k ~ + k.k a
2
k

o 
_a_)KJl.1, 

H.1 2 J m ak-ak J m ak.ak ilkO 1 
J m J m 

M1 -.!.(-kk ~+kk il
2
k

O 
• .-L)M1 

H.l - 2 j milk-ilk j m ilk.ilk ako l' 
J m J m 

- - (il ) a -kllKIl1 = - ik.k - kll - Kill 
,,1 J m ilk. ilk l' 

J m 

we find that the coefficient of a 2 UP) /0 ~ 2 can be re­
written as 

(ikIlK&,\ + kIlK,~f + Ml,.l) = 

_ .!.k.k ~ W + .!.k.k il 2kO _il_ W • 
2 J m akikm 1 2 J m ilkikm ilkO 1 

Multiplying Eq. (22) by L from left and using the 
relations 

tL~km(ilk~:k )Wl R = !kjkm [L il:
J
. (::: R) 

1 m 
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= tk.k [!... (L aWl R) 
) m ok

j 
ak

m 

oL oWl aWl aR] 
- ak

j 
ak

m 
R - L ak

m 
ak

j 

1 (OL a = "2k.k -- -- (W R) 
J m ok. ok 1 

J m 

aL aR 
+-Wl -
a~ akm 

-- (LW)- +- W -
a aR aL aR) 

akm 1 akj akm 1 ak
j 

aL aR 
=k-'W 'k­

ak 1 ak' 

a a 
=-Lk-W'k-R 

ak 1 ak ' 

we can obtain Eqs. (23) and (24). 
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Modified Lippmann-Schwinger equations for two-body 
scattering theory with long-range interactions 
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Two kinds of modified Lippmann-Schwinger equations are derived for the case of long-range 
potentials. The equations of the first kind are homogeneous and are a direct result of the fact that 
the standard Lippmann-Schwinger equations do not hold when long-range forces are present. The 
equations of the second kind depend on the existence of an operator Z such that W ± = s-Iim 
exp (iHt)Z exp( - iHot). A general recipe for constructing Z is given and its computation is carried 
through for the case of asymptotically Coulombic potentials. The resulting equations are used to 
compare the long-range theory with the theory with a space cutoff (i.e., screened potential) in the 
limit in which that cutoff is being removed. 

1. INTRODUCTION 

When two particles are interacting via long-range 
potentials, such as the Coulomb potential or potentials 
decreasing at infinity slower than the Coulomb potential, 
the" strong" wave operators of time-dependent theory 

w (:) = s-lim exp(iHt) exp(- iH ot) (1. 1) 
t-+:t:OO 

do not exist. It has been recently observed l - 4 that a 
time-dependent scattering theory can be formulated if 
based on a more general definition of wave operators, 
namely the" renormaIized" wave operators 

w(~) = s-lim exp(iHt) exp[- iC(Ho; t)] exp(- iHol) (1. 2) 
t-2:00 

for adequate choices of the self-adjoint function G(H 0; t). 
The in.troduction of w(~) in (1. 2) can be phYSically justi­
fied 4 by showing that the asymptotic conditions 

lim I (exp(- iHot)"ifJ I A exp(- iHot)"ifJ) 
t-±oo 

- (exp(- iHt)W(~)"ifJ I A exp(- iHt)W(~)"ifJ) 1= 0 (1. 3) 

are satisfied for each bounded observable A. 

Stationary scattering theory for short range poten­
tials can be based5 on the expression (1. 1) which leads 
to the following time- independent representations for 
the strong wave operators: 

J 
+00 ± if H 

W(~) = s-lim 00 ,. d A,E A9 
.-+0 - H - X ± tf 

J +00 H ± if (4) = s- lim d AE A 1. 
<-+0 -00 X - Ho ± if' 

where E~O, and E~ are the spectral functions of H 0 and 
H, respectively. The above representations of the strong 
wave operators in terms of strong limits of the above 
Riemann-Stieltjes integrals5 - 6 allows one to derive 
Hilbert-space versions of the Lippmann-Schwinger 
equations and T operator 5 : 

J 
+00 1 

"ifJ.="ifJ+s-lim (X-Ho)dAEf.."ifJ., (1.5) 
.-+0 -00 X -Ho ± if 

f )W(S) 
(H-X')2 + f2 -

(1. 6) 
where "ifJ, = W(~)"ifJ. 

The stationary scattering theory outlined above can be 
generalized7 to include long-range potentials by basing 
the theory on the expressions (1. 2) for the renorma­
lized wave operators. The expressions for the renor-
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maIized wave operator and T operator take the following 
form: 

J
+OO H 

W(~) = s-lim A(H, X', ± f)d A,E A~' 
t~+O -00 

T = s-lim _1_ 
.-+0 21Ti 

J +00 H 
dA,EA~[A*(H,x',- f) 

-00 

- A *(H, X', + f) ]W(~), 

(1. 7) 

(1. 8) 

where A(X, X', ± f) is defined by the following integral: 
,00 

A(X, X', ± €) = ± € fo exp[i(X - X')t - iC(X'; t) 'f €tJdt. 

(1. 9) 
Due to the complicated structure of (1. 9) the deriva­

tion of Lippmann-Schwinger equations and the explicit 
taking of the limit € ~ + 0 for the above T operator 
expressed in terms of eigenfunctions of H 0 (which would 
lead to expressions for the T matrix) is a very difficult 
undertaking. It is instead convenient to introduce (Sec.3) 
time-independent operators Z-; for which W(~)EHO(A) 
can be written as 

W(~)EHO(A) = s-lim exp(iHt)Z~ exp(- iHot) (1. 10) 
t-±OO 

for any A which is a compact subset of the spectrum 0 0 
of H o' 

A general procedure for the construction of the opera­
tors Z -; is given in Sec. 3. It is convenient to use two­
Hilbert space theory in order to derive Hilbert space 
versions of the Lippmann-Schwinger equations and T 
operator involving the operators Z -;. Existence and 
boundedness of Z'; is proven for the case of asymptotic­
ally Coulombic potentials (Le., potentials which are the 
sum of the Coulomb potential and a short-range poten­
tial) in Sec. 4. 

In Sec. 2 another version of the Lippmann-Schwinger 
equations is derived. These equations are independent 
of the operators Z -; and are valid for potentials which 
behave asymptotically as r- K

, ~ < K ::s 1 and whose 
renormalized. wave operators we>;;) are complete. Since 
they do not contain explicitly inhomogeneous terms 
related to the plane waves, they are not computationally 
suitable for calculating distorted waves for long-range 
potentials. l;Iowever, these equations turn out to be ex­
tremely useful in understanding the long- range theory 
as a limit of a theory with a space cutoff. 

In Sec. 5 we compare the equations fOJ" distorted 
waves for a Coulomb potential (obtained in Sec. 4) with 
the corresponding equations for the same potential with 
a space cut-off. This enables us to study the behaviour of 
the cutoff theory in the limit when the cutoff is being 

Copyright © 1973 by the American Institute of Physics 1398 
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removed. We arrive at conclusions which partially con­
firm earlier findings pertaining to the pure Coulomb 
case V(r) = cr- 1 . However, these results also explicitly 
display the limitations of any method for long-range 
potentials based on solving the problem for the short­
range case obtained by introducing a cutoff, and then 
removing that cutoff. It turns out that such a proce-
dure is suitable off the energy shell but it can be 
misleading on the energy shell. This is due to the fact 
that on the energy shell the leading terms obtained in 
the modified Lippmann-Schwinger equations off the 
energy shell become zero by virtue of the equations 
derived in Sec. 2. In particular, we conclude that the 
distorted waves for long-range potentials cannot be ob­
tained by first removing the cut-off and eliminating a 
"renormalization" factor while working off the energy 
shell with the standard Lippmann-Schwinger equations, 
and afterwards making the transition to the energy shell. 

2. HOMOGENEOUS MODIFIED LlPPMANN­
SCHWINGER EQUATIONS FOR DISTORTED WAVES 

In this section we derive a set of integral equations 
satisfied by distorted waves for scattering in long-
range potentials. The equations do not contain the opera­
tors Z ~ appearing in (1. 10) and are quite distinct from 
the equations for distorted waves obtained by taking 
(1. 10) as a starting pOint. The procedure used in de­
riving the equations is a direct extension of the approach 
taken for the case of short-range potentials. Essential 
use is made of the fact that for long-range potentials 
we have 

w-lim exp(iHt) exp(- iHot) = O. 
t-±oo 

This fact has been first established by Dollard 8 for the 
Coulomb potential. The resulting equations 

(2.1) 

correspond to Hilbert space versions of the Lippmann­
Schwinger equations for distorted waves, derived for the 
Coulomb potential by West 9 (who used a different pro­
cedure). 

The following two lemmas are required: 

for all ~ E :J) H and 

-q, = w-Um f +00 1 Vd }.E~O-q, 
_-+0 -00 H - ;\. 'f if 

for all -q, E :0 H • 
o 

Proof: We first prove that 

(2.7) 

lim (gl exp(iHt) exp(- iHot)f) = 0 for every g EX. 
t-+±oo 

If g is a bound state, i.e., Hg = - '/]g, we have 

(gl exp(iHt) exp(- iHot)f> = exp(- it)t)(gl exp(- iHot)f). 

Since the spectrum (J 0 of H 0 is absolutely continuous, 

d(gIEfOf) 
(glexp(-iHot)f)= 1 exp(-i;\.t) d;\.. 

°0 d;\. 

The above expression converges to zero as t ~ ± CIJ by 
the Riemann-Lebesgue lemma. 

If g is not a bound state we have 

I (gl {exp(iHt) exp(- iHot) - W(~) exp[iG(Ho;t)]}f) I 

= I ({exp(iHot) exp[iG(Ho; t)] exp(- iHt) 

- W(~)*}gl exp[iG(Ho; t)]f) I 

::s; lI{exp(iHot) exp[iG(Ho' t)] exp(- iHt) 

- W(~)*}gllllfll, 

with the last expression going to zero as t ~ ± oc due 
to the completeness of W(~). Thus 

lim (g I exp(iHt) exp(- iH ot)f) 
t-+±oo 

= lim (gl W(~) exp[iG(Ho; t)]J) = 0 
t-+±oo 

by (2.3) and therefore (2.4) is true. 

We note that for any two self-adjoint operators H 0 

and H we have5 

Lemma 2.1: Suppose the wave operators 

W(~) = s-lim exp(iHt) exp{- i[Hot + G(Ho; t)]} (2.2) = ± f J;oo exp(['f f + iH]t) exp(- iHot)dt. 
t-±oo 

exist on the Hilbert space X and are complete, where 
G(Ho; t) satisfies 

w-lim exp[iG(Ho; t)] = 0 (2.3) 
t-+±oo 

and Ho has an absolutely continuous spectrum. Then we 
have 

w-lim exp(iHt) exp(- iHot) = 0 
t-±.oo 

(2.4) 

and 

w-lim J +00 'f if d EH 
_ -+0 -00 A - H 'f if ;I. ;I. o 

= w-lim f +00 ± if d EHo - 0 (2.5) 
--+0 -00 H-;\.±if ;I. ;I. - • 

If ~H = ~H and V = H - H 0' then 
o 

~ == w-lim f+oo 1 Vd}..Ef<I> (2.6) 
_-+0 -oo;\. - Ho 'f if 
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Now if (2.4) is true then (cf. Ref. 5, p. 437) 

W-lim(±E) tOO exp(['f f + iH]t) exp(- iHot)dt = O. 
_-+0 0 

Thus (2.5) is verified. To prove (2.6) we use the 
following identity 

r +00 ;\. - H 0 H f +00 'f if H 
-----"--.- d;l.E;I. + . d}..E;I. = 1, 

--00 ;\.-Ho'fU -00 ;\'-HO'fZf 

the result following from (2.5) and the following relation 
(cf. Ref. 10, Lemma 2.1) 

f +oo;\. H f +00 1 H 
-----d;l.E}..= Hd;l.E}... 

_00 ;\. _ H 0 'f if -00 ;\. - H 0 'f if 

The validity of (2.7) follows from the symmetric 
roles played in (2. 5) by the operators H and H o. 

(2.8) 

In order to apply Lemma 2. 1 we must first examine 
under what conditions (2.3) is true. 
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Lemma 2.2: Let H have an absolutely continuous 
spectrum and suppose - G(A; t) = gl (A) + 11 (A)/2 (t), where 
lim 1 2 (t) = 00 and g 1 (A) is real. Also assume u = 11 (A) 
t~±oo 

is such that A = lil(U) and d/1 (A)/dA exist almost every-
where on the set a = / 1«- ee, + (0». Then (2.3) is true. 

Proal: We consider the following expression for 
I,g E JC 

VI exp[- iG(Ho; t)]g) 

+00 dVI E~Og) 
= f exp[i/1 (A)/2 (t)] exp[ig1 (A)] dA. (2.9) 

_00 dA 

By performing the substitution of variables u = 11 (A) 
and denoting cf>(A) = dVIE~Og)/dA, we obtain 

1 exp[iuI2(t)] exp{ig1[Ji 1 (u)]} 
a 

x cf>[Ji1(U)](d/ 1("A)I )-ldU • (2.10) 
dA >-':/-I(U) 

1 

Now since the above integrand is an element of L1(U) we 
obtain (2.3) from (2.10) by an application of the Riemann­
Lebesgue lemma. 

Thus whenever G(Ho; t) satisfies the reqUirements of 
Lemma 2.2 we conclude that (2.6) is true provided W(~) 
are complete and :DH = :DH • In particular, for oil = 'lI± = o 
W(~)'lI, where 'lI± are the interacting states having the 
free state 'lI as an incoming or outgOing asymptotic 
state, respectively, the following integral equations are 
valid 

f 
+00 1 H 

'lI = w-lim --=---- VdE}..'lI+, 
+ .-++0 -00 A-Ho ± i£ 

(2. 11) 

They represent one alternative set of integral equations 
which for long- range potentials can be considered to 
replace (1. 5). 

We can verify explicitly from the renormalization 
term that (2.11) holds for a certain class of asympto­
tically Coulombic potentials. For Coulomb-like poten­
tials the renormalization term takes the formll ,12 

G(A; t) = ±~~ log(4A) + ~ logl tl~, qo = (~) 1!2e1e2 

(2. 12) 

where the positive and negative sign are valid for t > 0 
and t < 0, respectively. Then we can make the following 
substitution in Lemma 2. 2: 

11 (A) = ± ~, /2(t) = qo logl tl, 
"';'11. 

qo 
gl(A) = ± .fi: log(4A). 

Thus, in order to have (2.11) hold for Coulomb-like 
potential we require the wave operators W(~) to be com­
plete. A recent study13 establishes completeness for a 
large class of asymptotically Coulombic potentials. 

For potentials which decrease asymptotically as r-" 
the renormalization term is known1,14 for all ~ < k :5 1. 
It can easily be shown that Lemma 2.2 holds for such 
potentials. Thus if the renormalized wave ,?perators 
are complete the interacting state satisfies Eqs. (2.11). 
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We note that (2.11) are the Hilbert space analogs of 
the integral equations 

cf>.k(r) == - lim Is G/r, r'; ~ ± i£)V(r')cf>k(r')dr' (2.13) 
.-++0 III \ 2m 

Go (r,r'; ~) = m exp(N2m~ I r - r' I), 
217 I r - r' I Im~> 0, 

(2.14) 

with Similar equations holding for cf>i(r), where the above 
square root is chosen with positive imaginary part and 
the limit for £ ~ + 0 exists at least in the weak sense of 
distributions. For the Coulomb case Veer) = ../2/m x 
qo I r 1-1 the above equations become the equations de­
rived by West [cf. Ref. 9, Eq. (44)]. 

To rigorously derive equations of the form (2.13) 
from (2.11) we have to resort to some specification of 
eigenfunction expansions for H 0 and H. The most gener­
al formulation15 can be achieved by equipping :Ie with 
spaces of positive and negative norm. However, in po­
tential scattering eigenfunction expansions of the opera­
tor H 0 can be introduced directly5 as functions cf>r (f3) of 
the variables f3, y E (HI which correspond to the complete 
sets <B and e of observables (such as position and mo­
mentum observables for spinless particles) if H 0 can be 
expressed as a function of one of these two sets, say e 
[Le., (H 0 'lI)(y) = h(y)'lI(y) for any 'lI E :DH ] in the spec-o 
tral representation spaces L2«HI) of e. The precise 
mathematical statements embodying these assumptions 
lie in the request that hey) be Borel measurable and 
that for any Borel set ~ C (HI and for any l(fl) in the 
spectral representation space L~«HI) of <B 

(2. 15) 

J(y) = l.i.m. f I cf>y(fl)/(fl)dll(fl). 
III 

(2.16) 

If we assume that cf>i,(f3) are the eigenfunction expan­
sions of H, then for I in the ranges of W(~) we have 

(2. 17) 

Combining (2.11) with (2.17), we get as a consequence 
of the definition of weak Riemann-Stieltjes integrals 
(cf. Ref. 5, p. 472, Lemma 4. 1) 

= fllll dll(fl)g({3) filii 01 hey) _ ~ 0 'f i£ vI f3 ') 

x f I cf>f(f3 ')J(y)dIJ.(y). 
m 

(2. 18) 

If we restrict ourselves to functions g(f3) and/(y) with 
supports of finite II and IJ. measure, respectively, and 
assume that I cp+(fl') 1:5 constant and that (f31 [l/(h(y) -
Ho'f i£)]VI w) i~ II-integrable in f3', we can use Tonelli's 
and Fubini's theorems5 to state that as a consequence 
of (2.11), (2. 15), and (2.18) 

f dll(fl)iUf) f dIJ.(Y)CPY({3)J(y) 

= lim J I dll(f3)g(fl) J I dJ.L(y)J(y) 
.-++0 m III 

x f I ( f3 1 1 . VIf3'\CPy(f3')dll(fl')' 
m hey} - Ho 'f z£ } (2.19) 
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If, in addition, we assume 

lim f I ( f3 1 1 . VIf3')¢;(f3')dll(f3') 
.-+0 <R \ hey) - Ho 'f Zf 

exists and 

I g«(3} I lJ(y) I 1 f<R1 01 hey) _ ~o '!'if vl(3) ¢y(f3')dll(f3') 1 

is bounded by an element of L 1(iJ. x II, (R21) independent 
of f, we conclude by the Lebesgue dominated conver­
gence theorem 

¢;(f3) = lim f I ( f3 1 1 . VIf3~¢+(f3')dll(f3') 
.... +0 <R h(a)-Ho'FZf J r 

(2.20) 
for II-almost all f3 E (Rl and iJ.-almost all y E (Rl. How­
ever, in general we can expect that (2.20) holds only in 
the sense of the preceding Eq. (2.19), Le., only after a 
smearing in {3 or y or both is carried out (cf. Sec. 5). 
We obtain (2.13) by specializing (2.20) to the potential 
scattering case where f3 = r, y = It, and h(k) == k 2 /2m. 

It should be emphaSized that the solution of (2.13) is 
not unique since both the outgoing and incoming dis­
torted waves satisfy exactly the same equations. We 
note that a very important implication of (2. 20) is that 
the ordinary Lippmann-Schwinger equations 

¢;({3) = ¢y({3) 

+ lim f I ({31 1. VI{3~ ¢y({3')dll({3') (2.21) 
.. -0 <R h(a) - Ho ± Zf J 

cannot hold in the case of long-range potentials. That 
would lead to the self-contradictory conclusion that the 
free wave ¢y(f3) is identically equal to zero. 

3. THE CONSTRUCTION OF Z~ FOR LONG-RANGE 
INTERACTIONS 

The existence of operators Z~ for which (1. 10) is 
satisfied has been established in Ref. 16 for s-level 
two-body scattering with spherically symmetriC poten­
tial VCr) for which I (dK/ drK) VCr) I :$ C 11 + rl- <- K for 
some f> 0 and K == 0, 1,2. The method of proof is 
analytic and not applicable to larger classes of long­
range potentials, including those which are asymptotic­
ally Coulombic, but locally nonspherically symmetric 
and without outstanding smoothness properties. In this 
section we present a procedure which is applicable to 
such cases. 

To formulate a general procedure for constructing 
the operators Z ~ when G (H 0; t) is given, it is convenient 
to introduce an auxiliary set of observables {AI' ... ,An} 
which are independent of H 0 but which together with H 0 
form a complete set. 5 Then one can work in the spectral 
representation space5 L ~o«Rn+l) of {Ho, A 1> ••• ,A,J in 
which H 0' A 1 , ..• ,An are represented by 

(HbtJ;)(A,a) == AtJ;(A,a), :ORO = [tJ;lfA21 tJ;(A,a) 12diJ.O < ee], 

(A'tJ;)(A,a) = ajtJ;(.\,a), a= (al''' .,a,,) E (Rn. (3.1) 

If we further assume that the spectrum of H 0 is abso­
lutely continuous (as is always the case in potential 
scattering), then iJ.o = iJ.l X iJ., where Radon-Nikodym 
derivative dill (A)/ dA of III exists. Hence if £2 denotes 
the space L 2 «(Rn+l, dAdiJ.) of functions tJ; (A, a) square 
integrable with respect to the Cartesian product of the 
Lebesgue measure on (Rl with the measure Il on (R", we 
can choose £2(00) = Po £2 as a spectral representation 

o 
space for {H 0' A l' ... ,An} in which (3. 1) holds, where 
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XA (A) being the characteristic function of the set ~, 
which in the present case is the spectrum 00 of Ho. 

(3.2) 

According to the theory of Fourier-Plancherel trans­
forms, the mapping which takes tJ; E £2 into 

~ 1+00 

tJ;(t, a) == (211J-1/2 l.Lm. exp(iAt)tJ;(A, a)dA (3.3) 
, -00 

is a unitary operator on £2. If we set G(A, t) == 0 for 
A t 00 at any t E (Rl, the operators Z± can be introduced 
as 

(3.4) 

where, if the following limit in the mean eXists, we have 

(Z;tJ;)(A, a) == ± (211)-1/2 

1
±00 A 

x l.i.m. 0 exp[- iAt - iG(A; t)]tJ;(t, a)dt. (3.5) 

It is clear that the above operators Z; are not going to 
be bounded or even densely defined in £2 for arbitrary 
choices of G(A; t) [such as G(A; t) = - At]. In fact, we 
shall see that Z; is not bounded even for G(A; t) chosen 
in Sec. 4 to satisfy the existence requirements of par­
ticular renormalized wave operators such as those for 
asymptotically Coulombic potentials. NOW, boundedness 
is desirable if we want to apply the formulas of two­
Hilbert space theory10 to the present case. Hence the 
following operators are introduced: Z~ = ERO(~)Z±ERO(~), 
where ~ is a compact subset of 00' The boundpdness of 
this operator can be investigated for each particular 
class of potentials. 

A study of the boundedness of Z ~ can be based on the 
following representation of Z ± , 

(Z±tJ;)(A,a) = lim J+oo ZH(A,A')tJ;(A',a)dA' (3.6) 
e .... +O -00 

valid at least for all tJ; E £ 2 which are integrable as 
well as square-integrable, where 

ZH(A, A') = ± (211)-1 foo exp[Ht - i(A - A')t - iG(A; t)]dt. 

The expression (3.6) follows from the relation 

(Z±tJ;)(A, a) = ± (211)-1/2 lim too exp('F ft) 
.-+0 0 

x exp[- iAt - iG(A; t)]$ (t, a)dt, 

(3.7) 

(3.8) 

(which holds by the Lebesgue dominated convergence 
theorem) by substituting (3.3) for $(t, a) and USing 
Tonelli's and Fubini's theorems5 to reverse the orders 
of integration in t and A. 

In order to prove that the operators Z ~ are the re­
quired operators for which (1. 10) holds true, we note 
first that the limit in (1. 2) is equal to the limit in (1. 10) 
for tJ; E £2(~) = P c.£2 = L2(~) 0 L~«(Rn) if and only if 

s-lim exp[iHot + iG(Ho; t)]Z~ exp(- iHot) = P A' (3.9) 
t .... ±oo 

To prove (3.9) we have to take advantage of the fact 
that from the physical as well as the mathematical point 
of view the functions G(Ho; t) have to satisfy the con­
ditions 

s-lim exp[iG(Ho; t + T) - iG(Ho; t)] = 1 (3. 10) 
t-±oo 

for any T E (Rl. In fact, the above relation is a necess­
ary and sufficient prerequisite4 for the intertwining pro-
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perties of the wave operators W(~), which are essential 
from both a physical and mathematical point of view. 
These properties imply the following result, which is 
required in the sequel. 

Lemma 3. 1: If the spectrum (70 of H 0 is absolutely 
continuous, then (3. 10) is true if and only if 

lim 11- exp[iG(A; t + r) - iG(A; t)] 1 = 0 (3.11) 
t-±oo 

at each fixed r E CRl for all A .E (70' with the possible 
exception of a set of Lebesgue measure zero. 

Proof: If (3. 11) is true then (3. 10) follows from 

II ~ - exp[iG(A; t + r) - iG(A; t)]~ 112 

dIlE~0~1I2 
=111-exp[iG(A;t+r)-iG(A;t)]12 dA 

00 dA 

by applying Lebesgue's bounded convergence theorem. 
Conversely, if (3.10) is true for some fixed r E CR1, then 
by choosing ~ n E X such that 

dIlE~0~nIl2 
-~--"-- = Xo n[n n+ 1)(A) 

dA o· 

we conclude that (3.11) is satisfied almost everywhere 
on (70 n [n, n + 1). Hence (3.11) is true almost every­
where on 

+00 
(70 = nY-oo (70 n [n, n + 1). 

An easy computation based on (3.6) and (3.7) leads to 
the result that for any ~(A, a) E .c2(~) which belongs to 
L 1 (~) for /l-almost all a E eRn 

II~ - exp[iHot + iG(Ho;t)]Z~ exp(- iHot)~112 

=L.B±(A,t,~)d~ (3.12) 

where in terms of the Heavyside function O(s), for which 
O(s) = 0 for s < 0 and O(s) = 1 for s> O,we have 

B±(A,t,~) = 11_:00 {1- O(± [t + T]) exp[iG(A;t) 

- iG(A; t + T)]} exp(- ill. r) $ (T, a)drd/l(a) 12. (3. 13) 

In view of (3.11) and the fact that the integrand in 
(3.13) is bounded by the integrable function 12$(r,a)l, 
we· conclude by Lebesgue's dominated convergence 
theorem5 that 

lim B±(A, t,~) = O. (3.14) 
t ..... :i:CO 

We can apply this theorem again to (3.12) since we are 
dealing with a finite region of integration, thus arriving 
at (3.9) for ~ in the considered dense set of functions 
in .c2(~). Hence if Z~ is bounded on .c2(~) we can ex­
tend (3.9) to every ~ E .c2(~). 

Finally, let us point out that the above arguments 
leading to (3.9) also lead to the conclusion that 

s-lim exp[iHot + iG(Ho; t)]Z~ exp(- iHot) = O. (3.15) 
, .... tOO 

Hence the operator 

Zt:,. = Z~ + Z~ (3.16) 

has the properties 

s-lim exp[iHot + iG(Ho; t)]Zt:,. exp(- iHot) = Pt:,.. 
t-+%oo 
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Thus we can deal with 

W(~)EHO(~) = s-lim exp(iHt)Zt:,. exp(- iHot) (3. 17) 
t-+±oo 

instead of (1.10). Note that if Z± defined by (3.4) and 
(3.5) are bounded operators on .c2«7o), then a similar 
argument as given above implies (3.17) holds with 
~ = 0"0' 

We can summarize the above results in the following 
lemma. 

Lemma 3.2: Suppose that the operators Z± defined 
on the spectral representatjon spack .c2(0"0) by (3.4) and 
(3.5) are such that Z~ = E O(~)Z±E O(~) are bounded for 
some compact subset ~ of the spectrum °0 of Ho' If 
G(A, t) satisfies (3.10) for almost all r E CR1 and A E (70' 
then W(~)EHO(~) can be represented by (1.10) and (3.17). 

The above lemma allows us to apply two- Hilbert 
space theory10 to the operators W(~)t:,. = W$Y)EHO(~) 
considered as wave operators from X t:,. = EB O(~)X to X, 
if we let Z t:,. play the role of the «identification" opera­
tor. Hence, all the results of ReLI0, Sec. 2 can be re­
stated for the present case, and in particular the follow­
ing theorem is true. 

Theorem 3. 1: If (3. 17) is true for some Borel 
subset ~ of °0, then for any'll = EHO(~)W and w± = W(~)w 

+00 1 
Zt:,.*w± = 'II - w-lim 1 

~-++o -co Ho - A ± if 

x (Z.t.*H - HoZ.t.*)d~.E~ \If ±' 

and the T operator satisfies the relation 

EHO(~)TEHO(~) 

= !. w-lim r +00 dAE~O(ZMH - HOZM)O_ 
1T ~-++o --00 

f 
X • 

(Ho - ,\)2 + f2 

(3.19) 

(3.20) 

We will now rewrite (3.18) as integral equations re­
lating the free eigenfunctions CP./fi), y, fJ E CRl, to the full 
eigenfunctions cpt (fJ). In a completely analogous deriva­
tion as that give~ for (2. 18) we can write 

=: 1ml dll«(3)g(f3) 1m l ~ I H - h~Y) ± if 

x (HZt:,. - Zt:,.Ho)j (3~ dll«(3/) 1m l CPy«(3/)f(y)d/l(Y)· 

Under the same conditions on «(3 [[1/(H - hey) ± iE)] x 
(HZ t:,. - Z t:,.H 0) 1 (3') as stated in Sec. 2 for (fJl [llh(y) -
H 'f if)] V 1 (3/) and the additional assumptions that 
«(31 zt:,.1 (3/) be II-integrable in (3' we conclude that, under 
the implicit agreement that hey) E ~, 

CPr (f3) = 1ml «(3 1 Z t:,. 1 (3 ')CP y «(3 ')d II (f3 ') 

- lim 1m1f(31 1 . (HZt:,. - Zt:,.Ho)1 (31) 
.-++0 ~ H - hey) ± Zf 

x ct y(f3')dll(f3/) (3.21) 
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is valid for v-almost all {3 and iJ.-almost y. In particular, 
if we choose {3 = rand y = (k, l, m), where k corres­
ponds to mo, l to angular momentum L2, and m to the 
z component L z of L, then cf>y({3) = 4>klm(r) is the out­
going free spherical wave 5 and (3.21) can be written as 

4>Wm(r) = J 3 (rl zt>.1 r')4>klm(r')dr' 
(Jl 

- lim J s dr'G (r, r';!!!" Of iE) 
.-+0 (Jl 2m 

x r (r'l HZ t>. - Z t>.H I r")4> (r")dr" (3.22) 
• (Jl3 0 kim , 

where G(r, r'; ~) denotes the full Green's function corres­
ponding to the resolvent (H - ~)-1. Note that (3.22) is 
valid only when k 2 /2m belongs to the set ll.! 

4. EXISTENCE AND BOUNDEDNESS OF Z~ FOR 
ASYMPTOTICALLY COULOMB POTENTIALS 

In this section we compute Z ~ for asymptotically 
Coulomb potentials and show that it is a bounded opera­
tor for any compact subset ll. of 0 0 = [0,00). We shall 
limit ourselves to sets A of the form [c, dj, where 
o "" c < d < 00, since the result for the more general 
case follows from the result for such sets tl = [c, dj. 

For asymptotically Coulomb potentials we can ex­
press the integral kernel in (3.7) in terms of gamma 
and logarithmic functions. By inserting the expression 
(2.12) in (3.7) and performing the integration in the 
complex t plane, we obtain 

1 
Z (A A') = - [(A - A') - iEj-1 
+<, 211i 

x exp(~ 10g[(A - A') - iEj) 

x exp(- 1T~)(4Afiqol">': r(l- i~\ 
2v'A ,jA J' 

Z_.(A, A') = - -2
1 

. r(A - A') + iEj-1 
11Z 

xexp(- ~ log[(A-A') + iEj) 

(4.1) 

x exp(- 11
qO) (4A) ;qof"'X r (1 + iQo \ (4.2) 

25 5)' 

where we have chosen the branches of the logarithmic 
function with - 311/2 < arg[(A - A') - iEj ~ 11/2 and 
- 11/2 < arg[(A - A') + iEj ~ 311/2, respectively. 

We will first evaluate the expression (3.6) for func­
tions 1/1 (A'; a) = X[a b}(A') 1/11 (a) , where X[a b) is the charac­
teristic function of the interval [a,b) with 0 < a < b < ce. 
Tpe integration for the computation of Z ±(XLa. b) 0 1/11) = 
(Z,XLa.b») 01/11 can be carried out by using (4.1), (4.2), 
and the limit E --) + 0 can be taken explicitly. We give 
the results for the Z + case since the Z _ case is quite 
analogous: 
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[ (
iQO ) (11QO\ x exp 5 log I A - b I exp 25) 

a < A < b; 

A<a<b. (4.3) 

An inspection of the above equations reveals that 
infrared divergencies are not present since I r(1 -
iQo/5) exp(1I'Qo/2v'i) I stays finite as A --) + O. However, 
the factor A1/2 in (4.3) shows that ultraviolet divergen­
cies are present. Hence Z. is certainly not a bounded 
operator from £2(00 ) to £2(UO)' 

However, 

(4.4) 

is a well-defined element of £2(ll.) for ll. = [c,dj with 
o "" c < a < b < d < ce. The boundness of Z ~ obviously 
depends on whether the mapping 

(DX[a.b»)(A) = v'i~ - cos(~ log 1 ~ = :I)J (4.5) 

determines a bounded linear operator on L2(ll.). 

A study of the operator D is made in the following 
theorem. 

Theorem 4. 1: For fixed 0 "" c < d < 00 the mapping 
X[a, b)(A) --) (DX[a, b) )(A) is defined for each a, b E (c, d), 
where c < a < b < d, and acts as a bounded linear opera­
tor on functions \}I(A) E £2([c, dj) which are of the form 

n 

\}I(A) = I; o.X[a b )(A), n = 1, 2, . . . . (4.6) 
j= 1 ) j' j 

To prove the above theorem we require the following 
lemma: 

Lemma 4.1: There is a constant C = C(c, d) such 
that for any c < a < b < d with x = b - a we have 

d 
~ I X[a-2%.b.%)(A)(DX[a.b»)(A) 1

2dA ~ 16dx, (4.7) 

d 
~ 11 - X[a-2%, bu )(A) 121 (DX[a. b »(A) 12dA ~ Cx 2• 

(4.8) 

Proof oj Lemma 4.1: The inequality (4.7) follows 
immediately from the relation I (DX[a b»)(A) I ~ 2-.fd. The 
integral in (4.8) is equal to ' 

Now 

lex) ~ (1 a
-

2
% + l d )l( 10gl1 + [x/(a-A)jl)2dA . 

x 2 c b+x 2 x 
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Thus for A ~ a - 2x and A ~ a + 2x we have 

lex) ~ -(d- c) 6 - x2 = - (d- c)x 2• 1 (00 1)2 1 
2 s =1 2 s 2 

Hence (4.8) holds and the lemma has been proven. 

Proof of Theorem 4.1: Consider iI(A) given by 
(4.6), where we assume (ai' b;) n (a., b.) = C/J if i '" j 
and x~xrrU:n ~ 2 for every n, where\m~ = min (b i - at), 

l~i:5n 

Xmax = max(b t - ai)' This last requirement can always 
lSi:S:n 

be achieved by subdividing the partition in an appropri­
ate manner. 

We now decompose the action of D on X[o ,b.) into 
two parts: j ) 

(DX[Oj,bj»)'(A) = I5 j X[y2x j ,b j +%j)(A)(DX[aj,b)(A), 

(DX[Qj,bj»)"(A) = I5 j (DX[aj,bj»)(A) - (DX[aj,bj»)'(A). 

Thus we can write 

n n 

IIDilll ~ 116 (DX[a. b-»)'II + 6 II (DX[a' b-»)"II 
j=1 )' ) j=1 )' ) 
.. 

~ 116 (DX[a' b-»)'II + C 1/2(d - c)1/211'1t"11, (4.9) 
j=1 ), ) 

where Lemma 4.1 was used to obtain that 

= C1/2(d - c)1/211'1t"11. 

Now we write the first term in (4.9) as 

and consider any fixed value of i. The only terms in the 
above sum over j that contribute are those for which 

[a i - 2x1,b j + Xi) n raj - 2x j ,bj + Xj) '" C/J. 

According to an earlier made assumption xmax/xrrU:n~ 2. 
Hence we conclude that the maximum number of terms 
which contribute in the sum over j are ten for j ~ i and 
eight for j > i. Thus (4.10) reduces to 

.. i+8 

6 6 I «DX[ai' b,»)' I (DX[a b)') I 
1=1 j=i-10 J' J 

n i+8 

~ 6 ~ II (DX[a.,b-»)'111I (DX[a.,b.»)'1I 
1=1 j=,-10 ' , J J 

~ (16)(19)dll 'It"1I2, 

where (4.7) was used to obtain the bound on II (DX[aj' b
j
»)' II. 

Since any function whose support is contained in [c, d] 
can be approximated by a sequence of functions of the 
form (4.6), we conclude that the operator D is bounded 
on L2([c, d]). This completes the proof of Theorem 4. 1. 

Due to the boundedness of D and the form of z~ given 
in (4. 3) we conclude that Z t; is a bounded operator for 
A = [c,d], where 0" c < d < 00. The same is true for 
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z,:: by a similar argument. Thus Zt> is a bounded opera­
tor for Coulomb-like potentials. This implies that (3.17) 
is true. 

5. REMOVAL OF THE SPACE CUTOFF IN 
SCATTERING THEORIES WITH LONG· RANGE 
POTENTIALS 

In this section we shall compare the stationary scatter­
ing theory for long-range potential V 00 (r) with the theory 
in which a space cut-off (or screening) v R (r) is intro­
duced, i.e., the theory with the potential 

(5.1) 

where v R is some Borel measurable function for which 
vR(r) = 1 for I rl ~ R and vR(r) = O(r2+<),E > O,when 
r» R. For R < oc we are dealing with a theory with 
short-range interaction for which the strong wave­
operators 

W± = s-lim exp(iHRt) exp(- iHot), 
t-->±oo 

exist. It has been shown by Dollard 12 for the case of 
Coulomb-like potentials that 

w-limW~ == w-limSR = 0, (5.3) 
R .... +oo R-++oo 

On the other hand, it has been shown by several 
authors17, 18 that the distorted waves and the S-matrix 
calculated from the off-energy-shell Lippmann-Schwin­
ger equations for the cut-off Coulomb potential con­
verge to the Coulomb distorted wave and the Coulomb 
T matrix if a certain" renormalization" energy depen­
dent factor is divided out. Using the equations derived 
in Sec. 2, we shall show that when the energy-shell limit 
is taken in the solution to the cut-off Lippmann-Schwin­
ger equations we obtain zero at any fixed energy if the 
limit R -) + oc is taken first; a zero result is obtained, 
however, also if the limit R -) + 00 is taken last pro­
vided (since the point-wise limit does not exist) that a 
smearing in the energy (achieved by integration in k) 
after multiplication with an arbitrary function on the 
energy spectrum is first carried out. A similar result 
has been obtained via another approach in the special 
case of the pure Coulomb T matrix.1 9 ,20 

We first note that the second resolvent equation 

holds for all values of R ~ 0 when ~ is in the resolvent 
set of H R = Ho + V R' Hence the Green's function 
G R(r, r'; ~) of H R satisfies the same type of integral 
equation 

GR(~,r';q = Go(r,r';~) 
- J 3 Go(r, r"; ~) V R(r")G R(r", r'; qdr- (5.5) 

III 

for all R ~ 0 including R = 00. 

Lemma 5.1: Suppose limG R(r, r';~) exists and 
R->oe 

G R(r, r'; ~) is bounded by a function fer, r'; ~) which is 
square integrable in each neighborhood of r' and bound­
ed by a constant in the complement of each neighbor­
hood of r'. Then for almost all rand r' 

limGIll(r,r';~) == G(r,r';~). (5.6) 
R-+OO 
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Furthermore,if 1<p(r)1 ~ const for large Irl (such as in 
the case of plane waves or spherical waves) and 
fer, r'; 0 is square integrable then 

lim J dr'G R(r, r'; ~) V R(r')<p(r') 
R-+oo = J dr'G(r,r';~)V(r')<p(r'). (5.7) 

Proof: The statement (5.6) follows from Eq. (5. 5) by 
application of the Lebesgue dominated convergence 
theorem and from the uniqueness of the solutions of 
Eq. (5. 5). The application of the Lebesgue dominated 
convergence theorem also yields (5.7). 

From Lemma 3. 1 and an analogous argument as given 
in the derivation of Eq. (2. 20) we conclude 

Thus if we consider the off-energy shell Lippmann­
Schwinger equations for the screened potential, 

<ptR(r;~) = <Pk(r) - J<R3dr'GR(r,r';~)VR(r')<pk(r') (5.9) 

we conclude by the above lemmas that 

lim lim <P~ R(r;~) = o. 
,-k2/2m R-+oo • 

(5.10) 

This result implies that for long-range potentials 
which satisfy Lemmas 3.1 and 5.1 the approach in 
which one starts with a cut-off potential and the corres­
ponding off-energy shell Lippmann-Schwinger equations, 
and then removes the cut-off by first taking the limit 
R ~ + 00 and then the energy shell limit, will not lead 
to the correct result for the distorted wave. Due to (5.3) 
we arrive at the same conclUSion when the limit 
R ~ + 00 is taken last. 

We now examine (3.22) to see exactly how the equa­
tions involving the operator Z ~ overcome the above 
problem. For asymptotically Coulomb interactions we 
will obtain explicitly the operators Z~, A = [k2 - T/, 
k 2 + T/], in configuration space and examine the Eq. (3. 22) 
as T/ ~ + O. This will provide inSight as to the relation­
ship of (3.22) to the standard Lippmann-Schwinger equa­
tions. The behaviour of each term of (3.22) is given in 
the subsequent three lemmas. 

To simplify the notation we shall set A = k 2 in (4. 1), 
i.e., in the sequel A is a variable in the spectrum of 
2mH 0 rather than of H o' This means that the operators 
2mH 0 and 2mH now assume the roles played before by 
the operators H 0 and H, respectively. 

Lemma 5.2: Let Z(~) be the operator defined in 
Sec.4 for asymptotically Coulomb potentials corres­
ponding to the interval A = [k 2 - T/, k 2 + T/], with T/ > 0, 
in the spectrum of 2mH 0 and let U be the unitary5 trans­
formation 

(U!J;)(k, l, m) = l.i.m.J <Pk1m(r)!J;(r)dr, 

<Pklm(r) = (2:
21/2

(_ i)ljl(kr)Yr(- f) 
of L2(R3) onto £2(UO) [we are taking O! = (l,m) in (3.1)]. 

Then we have 

(5.11) 

where Q klm(r; T/) is given in (A2)-(A6) and converges to 
zero as .,., ~ + 0, while 
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P klm(r;.,.,) 

= -- <P (r)[4(k 2 + ~)tqol(k2+~) k 
[ 

~ 1/2 

27Tq 0 (11+ 01/21m 

X r (1 i
qo ) e ( qo 

- (k2 + ~)1/2 xp k2 + ~)1/2 

X [- (7T/2) sgn~ + i log I ~ I])] ::::. (5.12) 

Proof In terms of U, U-1 and (4.1) we have 

1 (;11+1)1/2 

(U-1Z(~)U<Pklm)(r) = 27Ti ~k2_1)1/2 dk'<Pk'lm(r) 

X exp(- 7Tqo)(2k'f2jQolk'r(1_ i
qo) 

2k' k' 

X lim 1(;;+1)1/2 dk "2k" exp[(iqo - 1) 
y-+o (11_1)1/2 k' 

X 10g(k'2 - k"2 - iy)] 1J <P k"lm(r')<Pklm (r')r'2 

X sin(Jdr'd(Jdcfy f ' 

where here, as well as in the sequel, we choose the 
branch of the logarithmic function with - 37T/2 < 
arg(k'2 - k"2 - iy) ~ 7T/2. The normalization of <Pklm(r) 
is so chosen that the term in curly brackets is equal to 
15 (k - k"). To do the computation we shall replace that 
term by the function (2P)-1 X[k'- ,k+pl(k") (this amounts to 
"smearing" <Pklm(r) so as to obtain a function of r which 
belongs to L2{R3) and on which U-1Z(~)U is well defined). 
Mter integrating in k" and taking the limit y ~ + 0, we 
obtain 

1 (1) (k
2

+1)112 ~ 7T q ) - -- - 1 2 1/2 dk'k'<Pk'lm{r) exp __ 0 
27Tqo 2p (k -1) 2k' 

X {2k 'r2 
iQal

k
' r (1 _ :q,o) [exp(~,o log(k'2 _ (k + p)2)) 

- exp(:q,O log{k 2 - {k - P)2~ ] • (5. 13) 

To complete the proof we integrate by parts in (5.13). 
This allows us to take the limit p ~ + 0 and then arrive 
at (5.11) and (5.12). This is done explicitly in the 
Appendix. 

Lemma 5. 3: Assume that 

J 3 dr 'I G(r, r'; k 2 ± if) V(r')<Pk'lm(r') I ~ M k'lm(r; k) (5.14) 
<R 

for all E> 0, where M k'lm(r; k) as a function in k' be­
longs to L1([(k 2 - T/)1/2, (k 2 + T/)1/2]) for all T/ > O. Then 
for Qklm(r'; T/) and QUJ,(r;.,.,) defined in (A2) and (A6), we 
have 

lim f3 dr'G(r, r'; k 2 ± if) 
1) .... +0 <R 

X V{r')[ Qklm(r'; .,.,) - QUJ,{r'; .,.,)] = 0 (5. 15) 

uniformly with respect to all € > o. 
Proof: From (A3)-(A5) we see that Qklm(r;.,.,)­

QUJ,(r; T/) is of the form 

I
k';(112+1)1/2 112+ 

poe k ,k'; T/)<P""lm(r) k': (112 _1)1/2 + ~2_ 1)1) d(k'2)P1 (k ,k ')<p k'lm(r), 
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where the contributions toPo(k,k';TJ) originate from the 
first term in (A4) and from integrating by parts the 
term in the integrand in (A4) containing the dfo/d(k'2) 
factor (after the differentiation in p followed by setting 
p = 0 had been carried out in both cases). A detailed 
analysis shows that an TJ factor can be extracted from 
p o(k, k '; TJ) leaving the function pol TJ which is uniformly 
bounded in TJ. Hence this term behaves in accordance 
with the statement of the lemma. 

To deal with the term containing p 1> we apply first 
Tonelli's and then Fubini's theorem to interchange the 
order of integration in k' and r'. This application is 
warranted by (5.14) and the fact that p 1 is bounded in 
k' E [(k 2 - TJ)1/2, (k 2 + TJ)] when TJ < k 2. The desired 
result follows by using (5. 14) to majorize the integrand 
of the resulting integral in k'. 

The assumption (5.14) of the above lemma is true for 
the case of the pure Coulomb potential. This can easily 
be seen by using the explicit expression22 of the 
Green's function. Hence, it can be expected that due to 
the second resolvent equation relating the Green's func­
tions for the Coulomb-like and pure Coulomb cases, this 
assumption is also satisfied by any Coulomb-like poten­
tial. 

Lemma 5.4: If Z(~) is as in Lemma 5.2, then 

[U-1(HoZ(~) - Z(~>HO)UcJ>"lm](r) 

- k r(,,2+ n)1/2 -2iqol'" 
= -- ),(,,2 )1/2 dk'cJ>"'lm(r)(2k') 27rim .- n 

X r (1 - iqo'j exp(-- 7rqo + iqo log(k'2 _ k2)\ . 
k'! 2k' k' J 

(5. 16) 

Proof: Adopting the same procedure as in Lemma 
5.2, we get 

x r(l- iqo\ exp(- 7r
qo ) 

k' J 2k' 

(,,2 n)1/2 ( ')-1 
x lim r + (k'2 - k"2 _ ia) iqolk 

0-+ + 0 )(" 2_ n)1/2 

x (k'2 - k "2)X[k_P. k+p](k ")2k "dk". 

We note that we can replace the (k'2 - k "2) factor by 
(k'2 - k"2 - ia) without changing the value of the limit 
as a ~ + O. Then the integration in (k")2 can be ex­
pliCitly performed and afterwards the limit a ~ + 0 can 
be computed to obtain 

1 l' (1) [(k
2

+1/)1/2 dk'cJ> (r)(2k,)- 2iqolk' -- 1m - 2 1/2 k'im 
47rim p-++o 2p -(k - n) 

x r (1- ~,o) exp(- ::~) (~,o + ~ -ll~xp[(:q,O + 1) 
x log[k'2 - (k + p)2]] 

- exp[ (~,o + 1) log[k'2 - (k - p)2]] f. 
Noting that the above limit in p ~ + 0 represents dif­

ferentiation with respect to p under the integral sign 
(cf. Ref. 21, p. 124) we arrive at (5.16). 
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We can now apply the preceding three technical 
lemmas to the study of the expression 

cJ>~:m(r; TJ) = (U-1Z(2)UcJ>klm)(r) 

- J 3 dr'G(r, r'; k2 'f if) V(r')(U-1Z(2 )UcJ>klm)(r') 
ell 

- J
m

3 dr'G(r, r'; k2 'f iE)(U-1[Ho, Z(2)]UcJ>"lm)(r'). 

Comparison with (3.17) and (3.22) shows that 

cJ>:lm(r) = (W(~)cJ>klm)(r) 

(5. 17) 

= {W(~)E2m%([(k2 _ TJ)1/2, (k 2 + TJ)1/2DcJ>klm}(r) 

= lim cJ>::m(r; TJ) 
E,-++O 

i.e., the limit of (5. 17) for E ~ + 0 (which exist at least 
in the weak sense of distributions) leads to the TJ-inde­
pendent distorted wave for the long-range potential. 

By applying Lemma 5.2 to the first two terms on the 
right-hand side we arrive at the conclusion that their 
contribution is of the form 

Ft(TJ) (cJ>(k2 + n)1/2 1m (r) 

- J dr'G(r, r'; k 2 'f iE) V(r')4j(k2 _ 1/)1/2 Im(r'») 
- F,:(- TJ) (4)(k2_nil2Im)(r) 

- J dr'G(r, r'; k2 'f iE)V(r')cJ>(k2_ 1/)1/2tm(r'») 

+ N::m(r; TJ), (5.18) 

where N::m(r; TJ) ~ 0 as TJ ~ + 0 and by (5.12) 

(5. 19) 

where ~ takes the values ± TJ. Since at fixed E > 0 the 
last term in (5.17) obviously vanishes in the limit 
TJ ~ + 0, we arrive at a conclusion concurrent with that 
of other authors, 17 .18. 23 namely that off the energy 
shell the distorted wave for the long-range case behaves 
like the distorted wave for the theory with cut-off at R 
in the limit R ~ 00 [cf. the terms in large parentheses 
in (5.18)] times the oscillating factors F k(± TJ). 

The picture changes, however, if we take the limit 
E ~ + 0 in (5.17) for the purpose of computing the dis­
torted spherical wave cJ>:lm(r). In analyzing the behavior 
of the two terms in the large parentheses of (5.18) we 
cannot apply the result of Sec. 2 since the free spherical 
waves cJ>k'lm which occur correspond to the energies 
k' = (k 2 ± TJ)1I2 rather than k. Since no estimates uni­
form in E could be derived for the difference between 
these two cases, we shall assume for the moment that 
we are dealing with a pure Coulomb case. In this case 
we can resort to a formula by Ford [cf. Ref. 17, Eq. (75)] 
to compute the terms in large parentheses in (5.18), 
thus obtaining24 
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41(k2+UI12 Zm(r) - J dr'G(r,r';k 2 ± if)V(r')41(1I2+UI12lm(r') 

= exp( iqo I log(~ ~ if») 
(k2 ± if) 1 2 

X [4(k2 + ~)-iqo/(~iid/2h(k,r; ± f), (5.20) 

where 

1 ( rrqo \ ( iqO ) 
h(k, r; ± f) ="2 exp - 2(k2 ± iE)1/2l

1/2 
1- 2(k2 ± if)1/2 

x r 1 / 2 It + iqo )4)% (r) 
~~ 2(k2 ± if) 112 (1I2%it)1/2Zm 

and 41% / (r) converges to the Coulomb distorted 
(k 2±it)1 2Zm 

spherical wave as f ~ + O. Using the above result we 
see that the limit f ~ + 0 of (5.18) is well defined and 
yields 

Fki(1/) exp(~ ~o lOgl1/l) [4(k 2 + 1/l]'iqolkh(k,r;~ 0) 

- Fl(- 1/) exp (~ ~o (log 11/1 ~ irr~ 

x [4(k2 -1/)tiqolkh(k,r;~ 0). (5.21) 

Due to the form of Fki(~) given by (5.19) we conclude 
that in the limit 1/ ~ + 0 we obtain zero: 

lim -- [4(k 2 + 1/W',qo k +Ij 
k ~ . /( 2 )1/2 

'1-+0 2rrqo 

x [4(k2 + 1/)yiqolllr (1 ~ iqo \ 
. (k2 + 1/)1/2) 

xr 1~ e 0 ( iqo ) ~(1fq 
(k2 - 1/)112 xp 2(k2 - 1/)1/2 

1f:o) 

+ iqo logl1/1 I± 1 ~~U h(k,r;~ 0). I (k2 - 1/) k H (5.22) 

Now if we examine (5.17) and take first the limit 
f ~ + 0 and then 1/ ~ + 0, we conclude from (5. 22) and 
Lemma 5.3 that the terms which contribute to the 
CQulomb distorted wave are those containing the ex­
pression Q(l) given in (A2) and the commutator term 
in (5.17). Thus 

41!Zm(r) = lim lim I (_k_. ) 
,,-+0 .-+0 I 2m1ft 

x 41, (r')(2k'f2IQolk' r(l- i
qo) 

kIm k' 

x exp[:? (- ~ + i log(k'2 - k2V] 

+ (_k_) J 3 dr'G(r, r'; k2 ~ iE) 
21fq 0 G! 
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X (2k'f2Iqolk' r(1- i:,o) 

X exp[:? (- ~ + i log(k'2 - k2»)]~, (5.23) 

where the above limits are to be taken only after a 
smearing in the energy is first carried out. Hence on the 
energy shell it is the term containing [Ho, Z(~)] and a 
term from the integral of the product of the Green's 
function, potential and free spherical wave which con­
tribute most to the distorted Coulomb wave 41izm(r) if 
1/ > 0 is sufficiently small. 

While the above result is valid only for the pure 
Coulomb potential we expect that it is true also for 
Coulomb-like potentials. We should pOint out now that 
the fact that (5.10) is true (in the weak sense of distri­
butions) regardless of the order in which' the two limits 
R ~ + 00 and ~ ~ k 2 j2m are taken is due to the presence 
of cutoff dependent factors in <pt R which oscillate as 
R ~ + 00. These factors were first extracted in the pure 
Coulomb case, 18 but they are actually present in the 
Coulomb-like case.25 We show elsewhere25 that once 
these factors are extracted from the distorted wave­
function corresponding to the cutoff case at real 
energies (Le., after the limit ~ ~ k2j2m has been taken, 
then we can remove the cutoff (i.e., take the limit 
R ~ 00) and recover the distorted wavefunction for the 
Coulomb-like case. This procedure turns out to be valid 
not only for the two-body case but also for the general 
n-body case in all channels.25 

Finally, let us point out that the above considerations 
extend immediately to the T matrix since on the energy­
shell for any 1/ > 0 [cf. (3. 20)] 

(klml T I kl'm') = J 3 41kZm (r)(Z(I)*V)(r) 41izm(r)dr 
G! 

+ J 3 41 kZm (r)([Z(1) )*, H o]41iz ".) (r)dr 
Gl 

[naturally,the above expression contains ao ll , factor if 
V(r) is spherically symmetric]. Note that the normaliza­
tion of the spherical waves 41 k1m (r) was chosen in Lemma 
5.2 in such a manner that the T operator in (1. 8) is 
related to the above T matrix by 

00 + I 

(Tf)(k,l,m) = L:; L:; (klmITlkl'm')f(k,l',m'), 
1'=0 m'=-l 

00 + I 
if we work in the space /~o m!l L2([0, 00», Le., if we let 

T act on f with f(k, l, m) E L2([0, 00» for each (1, m). It 
should be emphasized that the above T matrix has the 
usual physical interpretation despite the long-range 
nature of the potential V(r) since the adopted choice of 
G(Ho; t) in (1. 2) makes the renormalized wave-operators 
W(1') physical4 and hence preserves (cf. Ref. 4) the cus­
tomary relationship between the T matrix and differen­
tial cross section. 

APPENDIX 

We make the following substitution in (5.13) 

exp( ~,o log(k'2 _ (k ± p) 2) ) 

= ~ + 1 -- exp - + 1 log(k,2 -(k ± p)2) ( iq ~-11 d ~(iqo) ~ 
k' d(k'2) k' 
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iqo + --log(k'2 - (k ± p)2) 
2k'3 

X exp[ (;,0 + 1) log(k'2 - (k ± p)2~ f 

and then integrate the first term by parts. This gives 
the following expression 

Xl exp [(;,0 + 1) log(k '2 - (k + p)2~ 

_ exp~(iqO + 1) log(k'2 _ (k _ p)2~ I_d_ 
Lk' Jld(k'2) 

X [~k'lm(r) exp(- ::~) 

x (2k'f2iqJk' r (1 - ;,0)(;,0 + 1) -1J 
- ~(~\ J. k2

+
n d(k'2)(~ ~, (r) 

811 2p"J k 2_ n k ~ k 1m 

X expC 11
q o ) (2k 'f2iqJk' 

\; 2k' 

X r (1- :q,o) (;,0 + ~ -1 llOg(k,2 _ (k + p)2) 

X exp[(;,o + 1) log(k'2 - (k + p)2)J 

- log(k'2 - (k - p)2) exp[(;,o + 1) 
X log(k'2 - (k - p)2~ f. (Al) 

We can now take the limit p ~ + 0 explicitly in the 
first term of the above expression. This yields the 
expression for P klm(r; .,,) in (5.12). The limits p ~ + 0 
in the second and third terms of (Al) are equivalent to 
differentiating the integral with respect to the parameter 
p. Differentiating the integral with respect to the para­
meter p is justified if the derivative' in p of the inte­
grand can be bound by an integrable function which is 
independent of p (cf. Ref. 21, p. 124). For the second 
term of (Al) this is easily verified to be true. Hence, 
by' differentiating that term we obtain Q~~~(r;.,,) + 
Q~~~(r; 7/), where 

(1) k (k2+n)1/2 
Q kl m (r; 7/) = - 211q ° ~k2_ n)ll2 dk' 

x (0;' <l>k'lm(r)) exp(:q,O log(k'2 - k2)) 

X exp(- rrqo)(2k'f2iqJk'r(1_ i
Qo) 

2k' k' , 
(A2) 
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x ~ lexp(- rr
q o) (2k'f2iqolk,(iqO + 1)-1 

dk' L 2k' k' 

(A3) 

Differentiation with respect to p of the integrand in 
the third term in (Al) does not yield a function which 
can be bounded by a p-independent Lebesgue integrable 
function of k' E [(k 2 _7/)112, (k 2 + .,,)1/2]. Hence,in order 
to take the limit p ~ + 0 of the third term of (AU we 
integrate that term by parts with respect to the function 
log[k'2 - (k ± p)2]. This yields the following expression: 

X exp~(iQO + 2\ log[k'2 - (k ± P)2]] I I(k:+n):~: 
L k' 'j I (k - n) 

_ l:) (_1_) 1:2+n d(k'2)1{lOg[k'2 _ (k ± p)2] - 1} 
±p ± 2p k - n 

x exp[(;,o +, log(k'2 - (k ± p)2)] 

dlo(k') iqo { 
x -- - - log[k'2 - (k ± p)2] - 1} 

d(k'2) 2k'3 

X log[k'2 - (k ± p)2] exp [(:q,o + 2) 

X log(k'2 - (k ± p)2)}0(k') - (:q,O + 1) 

x {log[k '2 - (k ± p)2] - 1} exp [(;,0 + 1) 

X log(k'2 - (k ± P)2)]/o(k') f ' (A4) 

where 

( 
i
qo)( iQo)-1 xr 1-- 1+-
k' k' 

and l:) ±p refers to the sum of the two terms following 
the sign l:) and corresponding to (+ p) and (- p), res­
pectively. The limit p ~ + 0 can be taken by Ref. 21 in 
each term of the integrand of the above expression ex­
cept the last one. This term is of the same form as the 
integrand of the last term in (Al) multiplied by the fac­
tor [- (iqo/k') + 1]. If we add and subtract the following 
two expressions 

we see that the last term of (Al) is equal to 
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±( 2 + ki:oJ-l~O(k,1);P) + i:; ~::;nd(k'2)fo(k') 

X (k ± P - k') log[k'2 _ (k ± p)2] 
k'(k ± p) 

x exp [(:q,o + 1) log[k'2 - (k ± P)2J~, (A5) 

where go(k, 1); p) consists of the terms in (A4) for which 
the limit p -7 + 0 can either be taken explicitly or by 
using the theorem in Ref. 21, p. 124. Now, we can apply 
this theorem to the second term of the integrand in (A5). 
Hence we conclude that the limit p -7 + 0 can be taken 
in (A5) and is obtained by differentiating the integrand 
with respect to p and afterwards setting p == O. Thus the 
limit p -7 + 0 of (A5) is given by a term Q~~~(r; 1)) which 
goes to zero as 11 -7 + O. 

The above results imply that (5.11) is true, where 

( ) 
(1) (2) (3) 

Q kim r; 1) = Q klm(r; 11) + Q kl",(r; 11) + Q kl",(r; 11). 
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The concept of bra-vector is endowed with a precise mathematical meaning by taking a Hilbert-space 
X (whose elements are the ket-vectors) and embedding it into a larger bra-space.£. The space.£ is 
constructed by fitting together all the different spaces with "negative" norm corresponding to 
equipping operators D in X. It is shown that the formal manipulations of Dirac's formalism become 
theorems on the resulting extended Hilbert space structure Xc.£. On.£ we define topologies and 
bra-ad joints of operators in X and investigate their properties. We show how these results can be 
used in deriving rigorous versions of the typical relations involving distorted waves in 
time-independent scattering theory. By applying this formalism to Fock space we obtain an extended 
Fock space framework suitable for the rigorous formulation of the concept of a field at a point in 
configuration or momentum space. 

1. INTRODUCTION 

In the present paper we adopt the theory of equipped 
Hilbert spacesl recently applied2 to stationary 
quantum scattering theory as the basis of a general 
rigorous formulation of Dirac's bra and ket formalism. 3 

There have been in recent years a number of at­
tempts4 - 12 (see the Refs. 7-9 for surveys of such work) 
in this direction, mostly based on rigged6 -11 or nested12 

Hilbert spaces .p c X c .p'. The triplets constituting 
these spaces consist in general of a Hilbert space X, a 
dense subset .p (the "ket" space) of X which is endowed 
with a finer topology (usually countably normed) than the 
strong topology of X and is nuclearly embedded in X, 
and of the dual oil' of oil (the "bra" space). Their scope 
in applications to quantum mechanics is limited by the 
relative intricacy of these topologies as well as by the 
fact that the generalized expanSions of different non­
commuting observables might He 9 in different spaces 
oil' if the corresponding operators do not have a common 
domain of essential seli-adjointness. 

An equipped Hilbert space X+ c X C :K._ also consists of 
a triplet in which J<:+ (called the space with positive. 
norm 1 in the triplet) is a dense linear subset of X, but 
it is supplied with an inner product which makes it into 
a Hilbert space and its embedding in X is quasinu­
clear.1 3 This implies the existence of an operator D (to 
be called the equipping operator) which maps isometri­
cally X+ onto X and has an inverse D-l which is Hil­
bert-Schmidt as an operator from X to X. When D is 
self-adjoint its extension D to X provides a unitary 
transformation of X onto a larger Hilbert space X_, 
X_ ::) X (called the space with negative norm in the 
triplet X+ c Xc X_). The quasinuclearity of the em­
bedding X+ -4 X turns out to be a necessary as well as 
a sufficient condition 1 for having the space X_ contain 
generalized expansions for arbitrary self-adjoint opera­
tors in X. 

In most of Sec. 2 we present some of the baSic features 
of the theory of equipped Hilbert spaces from a point of 
view which puts the onus on the equipping operator D 
rather than on X+. We require such an approach since 
one of the main goals we are after is to give a universal 
pleaning to the concept of bra-adjoint At of arbitrary 
bounded or densely defined unbounded operators A. It is 
clear from the outset that this will not be possible if 
working with a fixed triplet x+ c X c X_. By means of 
the procedure in Sec. 2 we assign a triplet Xl) C Xc X1 
to every equipping operator D. Then in Sec. 3 we show 
how to "fit together," so to speak, all such triplets. By 
fitting together spaces with negative norm X1 we ar­
rive at a larger space .f:, which we call the bra-space. 
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The Hilbert space X can be identified with a linear sub­
space .£Jte); of £, (£, IS not linear but vector operations 
can be defmed for some of the elements of .f:). We call 
the resulting ordered pair £'ket C .f: an extended Hilbert 
space. The construction of this space is purely alge­
braiC, but different topologies can be introduced, two of 
which are explicitly considered in Sec. 3. The inner pro­
duct (. I' ) on X is extended to a sesquilinear form ( . I' > 
in .f: X .£ket' with respect to which the concept of bra­
adjoint AT of an operator A in '£ket == X is then defined. 
The key ingredient in the construction of .£ which en­
ables the introduction of the concept of the bra-adjoint 
A t for a much larger class of operator than it is poss­
ible when we restrict ourselves to a Single equipped 
Hilbert space is contained in the fact that .£ is construct­
ed *out of sequences {in} of vectors in in x. Hence 
{A in} can be always defined and although in general it 
does not belong to the same space with negative norm as 
{In} did, it will belong to another such space, i.e., it will 
determine an element of.£. Since such a construction is 
not based directly on duality, it bypasses the restrictions 
usually imposed4 on A in constructing At. A slightly 
different construction of the bra-space is presented in 
Sec.7. 
In Sec. 4 we find necessary and sufficient conditions for 
existence of Green's functions in spectral representa­
tion spaces of complete sets of observables. We show 
in Sec. 5 how the introduced framework can be used to 
endow with precise mathematical meaning some of the 
key formal manipulations encountered in time-indepen­
dent scattering theory for free and distorted waves. The 
last section is presented only as an illustration of the 
applicability of the present formalism to quantum field 
theory. It is clear, however, that in this context the 
scope of the present formalism extends beyond the phYSi­
cally uninteresting case of free quantum fields. We in­
tend to elaborate on this point on a future occasion. 

In conclusion we would like to emphasize that we have 
not attempted to attach any physical meaning to those 
bra-vectors which are not also ket-vectors. Thus, we 
adopt the attitude that the physical interpretation of the 
theory is based exclusively on "wave-packets" and that 
observables are associated with self-adjoint operators 
in the Hilbert space X (i.e., the ket-space). The objects 
in bra-space are only auxiliary mathematical objects 
which the extensive experience accumulated by physi­
cists has established as being of great computational 
value. 

2. EXPANSIONS IN GENERALIZED EIGENVECTORS 
OF A COMPLETE SET OF OBSERVABLES 

Let X be an infinite-dimensional complex separable 

Copyright © 1973 by the American Institute of Physics 1410 
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Hilbert space with an inner product ( • I') which is linear 
in the right-hand side variable and determines the vec­
tor norm II '11. We shall present in this section a rigor­
ous theory of eigenfunction expansions for arbitrary 
self-adjoint operators in JC which embodies all the 
essential features of Dirac's formalism. The starting 
point is the notion of equipment! for JC. Since we shall 
find it necessary to deal simultaneously with different 
equipments, we base this notion on first introducing an 
equipping operator D and then building the spaces with 
positive and negative norms corresponding to D, rather 
than on the diametrically opposed procedure adopted in 
Ref. 1, in which these spaces are introduced first and the 
existence of an equipping operator D is deduced after­
wards. The advantage of the first approach will become 
apparent in the next two sections when we discuss the 
construction of a bra-space £ and the existence of ad­
joints in £ of operators acting in JC . 

Lemma 2. 1: Let D be a densely defined operator in 
JC with range equal to JC and having an inverse D-I of 
bound equal to one. The domain of definition :D (D) of D 
is a separable Hilbert space X D (called the space with 
positive norm corresponding to D) with inner product 
( '1') D' 

(flg)D = (Df I Dg), f,g E X D, (2.1) 

and vector norm 11'11 D for which 

(2.2) 

Proof: The functional ( '1') v introduced in (2. 1) is 
obviously a sesquilinear form in :D (D) x :D (D). If f ;>! 0 
then (flf) v = (Df I Df) > 0 since (jlf) v = 0 implies 
Df = 0 and consequently f = D-I(Df) = O. Thus ('1') is 
an inner product on the vector space :D(D). This space 
provided with this inner product is a unitary space de­
noted by X D' To prove the completeness of this unitary 
space, consider a Cauchy sequence f I .!2' ... in X D' 

Since 

we conclude that Df l' Df 2' • .• converges in the II' Ii-norm 
to a limitg E JC. In view of the fact that the range of D 
is JC, there is a vector f E X D for which g = Df. We 
have 

Ilfn - filD = II Dfn - Dfll ~ 0, 

thus establishing that X D is a Hilbert space. 

The inequality (2.2) is an immediate consequence of the 
requirement that liD-III = 1: 

Ilfll = IID-I(Df)ll::s II Dfll = Ilfllv' 

Finally, the separability of X D follows from the separa­
bility of JC since the existence in JC of a countable dense 
set tfl.! 2""} implies that the countable set {D-I f l' 

D -If 2' .•• } is dense in X D' 

In Ref. 1, p. 36, BerezanskH- proves the converse to the 
above lemma, namely that to any Hilbert space X which 
is a dense subset of JC and for which (2. 2) holds on all 
f E X corresponds a positive-definite operator Do map­
ping X into JC and having a left inverse Dc/ of bound 
one. Naturally, once the existence of such a Do is esta­
blished, any operator of the form D = UDo with U uni­
tary can be substituted for Do, and in general these sub­
stituted operators are not positive-definite. 
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Lemma 2.2: Let the adjoint D* of D be a densely de­
fined operator in JC with range JC and having an inverse 
D*-l of bound one, and denote by ('1') D the sesquilinear 
form 

(2.3) 

on JC x JC. This sesquilinear form is an inner product 
on JC, with the property 

Ilf11D-1 = (flf)]J2::s Ilfll, f E JC. (2.4) 

Let X 1 denote the completion 14 of JC with respect to 
this inner product (XL is calledl the space with nega­
tive norm corresponding to D). If D* is considered as 
a mapping from JC to X1, then it can be extended unique­
ly to a unitary operator H1> mapping JC onto X1, 

(DfIDg)D=(flg), f,gEJC. (2.5) 

X1 is a separable Hilbert space. 

Proof: The sesquilinear form ('I')D is positive de­
finite. In fact, if IIfll o - I = 0 then D*-If = O. Since D* 
has range CR(D*) = JC, there is a vector g E :D(D*) for 
which f = D *g. Thus g = D* -1 D* g = D* -1 f = 0 and con­
sequently f = O. 

To prove the existence and unitarity of D note that for 
any f,g E Xv 

(D* fl D*g)v = (D*-ID* fl D*-lD*g) = (fl g). 

Hence, by the extension principle, 14 D* can be extended 
in a unique manner to an isometric linear mapping D of 
JC into XL. To show that the range ofD is X1,note that 
JC is dense in X1 and therefore for any f E X1 there is 
a sequence D*gl'D*g2"" E JC converging in the 
II'IID_I-norm to f. Furthermore, as 

Iigm -gn li = IiD*-I(D*gm- D*gn)1i = IiD*gm-D*g~IiD-l, 

the sequence g 1> g 2' • •• E :D (D*) converges in the 1i'1I­
norm to a limit g E JC. Hence f = Dg. 

Finally, the separability of X1 follows from the separa­
bility of JC and the unitary equivalence of JC and X1 
expressed by (2.5). 

In the sequel we shall consider only operators D which 
together with their adjoints D* satisfy the conditions 
stipulated in Lemma 2. 1. We shall refer to the pair 
(X v' X1) by the name" equipment of JC corresponding 
to D". The ordered triple X D C JC C JCZ is called an 
equipped Hilbert space. 

In the preceding two lemmas we have shown that any 
choice of an operator D which satisfies the conditions 
stipulated in Lemma 2. 1 but is not necessarily possi­
tive-definite or even self-adjoint, leads to a particular 
choice of equipment. Due to the nature of the later con­
siderations in which many different equipments of JC 
are simultaneously conSidered, this approach is more 
convenient for the applications we have in mind than the 
approach advocated in Ref. 1, in which X is chosen first 
and D is constructed afterwards as a positive-defirtite 
operator. In fact, this positive definiteness is a restric­
tion which is exceedingly cumbersome in constructing 
speCific operators D well-suited to scattering theory. 2 

Moreover, the present approach also emphasizes the 
generalized inner product!5 aspect of an equipped Hil­
bert space, in which X1 is the enveloping space, JC the 
nucleus and {D} the "adequate" family of operators 
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from X1 to JC determining the various topologies 15 in 
such spaces. 

Theorem 2.1: Suppose that D and D* satisfy the con­
ditions of Lemmas 2. 1 and 2. 2. Then there is a unique 
sesquilinear form (fl g) D defined for all f E XZ and all 
g E X D which is continuous in both arguments with res­
pect to the norm topology of the respective Hilbert 
spaces and such that 

(fl g) Jj = (fl g), f E JC, g E X D, 

(lDflg)D = (fIDg), fE JC, gE XD' 

(2.6) 

(2.7) 

for all f E JC and all g E X D • Furthermore, the mapping 
M: X1 ~ X D which takes an element f of X1 into the 
functional (fl .) D on X D is a one-to-one antilinear map­
ping of X 1 onto the dual X D of X D' Any bounded opera­
tor A on X l) has a unique adjoint A'" in X 1, 

which is a bounded operator on X1, and coincides with 
A * on the domain :D (A *) of A *, i.e., 

Proof: For any f E JC andg E X D 

(fIg) = (fID-IDg) =«(D-l)*fIDg). 

(2.9) 

(2. 10) 

Since (DD-l)* is the identity operator on JC, we have 
(D-l)* = D*-l. We recall that ID is the extension of D*. 
Hence (2. 10) assumes the form 

(fIg) = (1D-1fIDg), fE JC, gE Xl)' (2. 11) 

which makes it obvious that an extension of the above 
sesquilinear form to all f E X1 is possible since JC is 
dense in xt and 1D- 1 is a bounded operator from X1 to 
JC. Moreover, (2.6) becomes true by the definition 

(fl g) D = (1D- 1 fl Dg), f E XZ, g E XD' (2. 12) 

while (2.7) is obtained from (2.11) and (2.12) by setting 
f = IDh with h E JC. 

Since for any fixed f E XZ the linear functional L f( .) = 
(fl') D is bounded on XD' 

I (f I g) D I :s II 1D- 1 f II II Dg II = II 1D- 1 f II II gill)' 

it represents an element of X D• The mapping M: f ~ L f 
of X~ into X D is obviously antilinear. Furthermore, if 
L f(g) == 0 then by (2. 11) 1D- 1 f = 0 and consequently 
f = 1D1D- 1 f = O. Hence M is one-to-one. In order to see 
that the range of M is X D note that if L(') E XD' then 
by Riesz' theorem there is a vector hEX D such that 
foranygEX D 

L(g) = (hi g) D = (Dhl Dg) = (1D- 1 (DDh) I Dg). 

Hence L = M(IDDh). 

According to the preceding result, for each bounded 
functional (fl A(') corresponding to a given bounded 
operator A on X D and for given f E X}) there is a 
unique vector rEX}) such that 

(flAg) D = (ftlg) l)' g E X D• 

The mapping f ~ r = A t (f) is obviously linear. The 
operator At is bounded by the closed graph theorem14 
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since it is defined on the entire space xt and it is 
closed. In fact, iff1J 2 ,'" andflJ1,'" converge in 
the II' 11 0 - 1 norm to f and h, respectively, then 

(A tfl g) = (fl Ag) D = lim (f" lAg) D 
n .... oo 

= lim (f~ I g) D = (h I g) D 
n-+OO 

for all vectors g E Xl) and therefore h = At f. 

Finally, to prove (2.9) we only have to note that if 
f E :D (A *) then A *f E JC. Hence by (2. 6) 

(A*flg) =(A*flg) = (flAg) 

for all g E X D' 

We shall introduce now the concept of generaiized ex­
pansion associated with any finite number of commuting 
operators. This concept generalizes that of eigenfunction 
expansion. 14 

Definition 2.1: Let AI"" ,Av be a set of commuting 

self-adjoint operators in JC, and EAl' .... AV(A), A C RV, 
their joint spectral measure defined on all Borel sets of 
av , i.e., if Cl' = (Cl'l"'" Cl'v) E RV 

A. = 1+00 

Cl'.EAl ... ·.Av(Rl X ···X dCl'. x· .. X Rl) 
t -00 t t' 

i = 1, ••• , II. (2. 13) 

Denote by l)( '1') the sesquilinear form 

Jj(flg) = (glf)D' (2. 14) 

on xt x Xl)' An Cl'-dependent family of mutually ortho­
gonal vectors CPl (a), ..• , cP N (a) in X1, normalized so 
that a 

Na 

.~ Ii CPj (a)II~~l = 1, Na = 1,2, •.. , + CXl 
J=l 

(2. 15) 

is a generalized expansion for {A l' .•• ,Av} if there is a 
measure p(A) on the Borel subsets A of the Cartesian 
product a(A 1) x··· x a(A/I) of the spectra of AI"" ,Av 
for which 

Na 

(fIEAl ..... Av(A)g) = J~ l)(fl¢j(a))(¢j (Cl')I g)Ddp(a) 
J= 1 

(2. 16) 
for allf,g E Xl)' 

In the above definition of a generalized expansion we 
have not required CPj (a) to be generalized eigenvectors 1 

of Ai in the sense that 

(¢j(a) I(Ai - a i 1)f) Jj = 0, j = 1, ... , Na (2.17) 

for a dense subset of vector sf in X D' By basing the 
definition on spectral measures we avoid the domain 
questions inherent in (2.17) and common to both the 
equipped 1 and the rigged7 - 9 Hilbert space approach. Of 
course, whenever A. f E X D for some f E X D' we can 
easily derive from t2. 16) (cf. the method used in proving 
Theorem 4. 2) that (2. 17) has to be satisfied for p-almost 
all Cl' E RV. However, we cannot generally expect this to 
happen for a dense set of vectors f E :D(A i ) n X D even 
when Al>'" ,Av are bounded in JC. On the other hand, a 
generalized version of (2. 17) will hold true after we 
extend ( • I' ) D to a larger space than X 1· 
It is shown in Ref. 1 (Chap. V, Sec. 2) that generalized 
expansions in the sense of Definition 2.1 exist in X1 for 
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an arbitrary set {A l' •.. ,Al'} of commuting self-adjoint 
operators in Je if an only if D -1 is a Hilbert-Schmidt 
operator. This fact motivates the introduction of the 
following concept. 

Definition 2.2: Let D be an operator for which both 
D and D* are densely defined and have range Je, Le., 
m(D) = m(D*) Je. The operator D is an equipping 
operator iff D -1 and D* -1 exist, have bound one, and are 
Hilbert-Schmidt,Le., Tr{n*-1D-I} < <Xl. 

The case of principal interest in quantum mechanics3 

when dealin~ with generalized expansions occurs when 
{A l' •.• ,A y ./" is a complete 14 set of self-adjoint opera­
tors. In that case, Na ;0 1 and the following result is 
valid. 

Theorem 2.2: Suppose {AI"" ,AJ is a complete 
set of self-adjoint operators,n an equipping operator and 
Je D C JC C JeL the corresponding equipped Hilbert space. 
Then there is a generalized expansion q'l(a) for 
{A l' •.• , AIJ} such that 

(fl EAl .. · .. Av(t.)g) = fA D(flq'l(a» (q'l(a)1 g) DdpD(a), 

(2. 18) 
for any f, g E JeD' where 

PD(t.) = Tr [D-l* EAI ..... A/J(t.)D-I J (2. 19) 

for any Borel set t. C lR IJ. The mapping 

(2.20) 

of :D(D) in L2v(RIl) is isometric and can be uniquely ex­

tended to a unitary transformation of JC onto L~D (Rl'). 

Proof: The first part of the theorem is an immedi­
ate consequence of Theorem 2. 2 in Ref. 2. 

The fact that U D maps isometrically :D(D) into Lt (RIJ) 
follows from (2.18) by setting t. = lRV D 

(fIg) = fRIl D(flq'l(a» (q'l(a)I g)DdpD(a), f,gE XlJ' 

(2.21) 

Since :D(D) is dense in Je, we can extend U D to all of Je. 

To show that the range of the so defined isometry is 
L~ (R/), letfo be a cyclic vector14 for {A v '" ,AJ and 
cmfsider the linear manifold spanned in L~ (Jip) by all 
functions D 

xorresponding to all Borel sets t. in RV. By (2.18) 
f o( a) "" 0 for P D -almost all a E R v. Using this fact and 
the relation 

which by .. ...(2. 18) holds f9.r any Borel set t.l C lIP, we in­
fer thatfA(a) = xA(a)fo(a). Since the linear manifold 
spanned by all such functions as t. varies over the 
Borel sets in the support of PD is dense 14 in Lp2 (Rv) if 
~ D 
fo(a) "" O,PD-almost everywhere, the last statement in 
the theorem is true. 

The concept of "sme~ring" a generalized expanSion 
q'l(a) with a function h(a), 

(2.22) 
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will prove to be very useful in defining smeared fields 
and other objects constructed from the fields at a point 
~ E RIJ in quantum field theory (cf. Sec. 6). In case that 
hE LtD(RIJ) one can proceed as in defining Bochner 

integrals 1 4 in JC by taking 

(2.23) 

as a defining relationship. In fact, since 

1(q'l(h,)If>Di = I fRY h(a)/(a)dpD(a) I ~ IIhli Ldfl1 

we conclude that (q'l( h) I') v is a bounded linear function­
al on Je. Consequently, by Riesz' theorem.!4 and (2.6) we 
conclude that there is a unique vector q'l(h) in JC which 
satisfies (2.23), and such that 

(2.24) 

In quantum field theory we require (cf. Sec. 6) a defini­
tion of (2. 22) for a much larger class of functions than 
those in L~D(R/J}. 

Theorem 2.3: Let KD-l(a,f;J) be the kerne12 of the 
operator U D D-l U;/, 

for a given equipping operator D. Denote by (\>D(R") the 
linear",space of all locally PlJ-square-integrable func­
tions g(a) defined on RV which are such that the function 

(2.26) 

is defined for P v -al~ost all 0 E R" and belongs to 
L~ (Rv). For each hE (\>11* (Rv) there is a unique ele-

D A 

ment ct(h) in XL which satisfies (2. 23)}or allf E Je v ' 
This vector belongs to JC if and only if h E L~ (iP), and 
in that case h = U;lh. v 

Proof: For compact t." C R" the existence of 

as a vector in JC has been established in the discussion 
preceding the theorem since fi . X A E Lp2 (RlJ). 

" lJ 

If t.l C t.2 C ..• covers R" and m 2: n then we infer 
from the existence of (2.26) that 

and that {q'l(h' X A )} is a Cauchy sequence in JeL. 
A " Hence, cp(h) exists as a limit in the norm of XJ1. Its 

uniqueness in XZ is a consequence of the existence of 
the one-to-one map M of Jejj onto Jei; introduced in 
Theorem 2. 1. 

We have already ~een that q'l(h) E JC when h E L~ (R/). 
Conversely, if q'l(h) E JC we infer from (2.23) that 

1 fi (o)/(a) dp D (a) is", a bounded linear functional in 
f E L~v(RV). Hence h(a) E Ltn(jIV) by Riesz' theorem. 

In conclusion, let us point out that (j> 11 (R v) contain s 
L~D (R."), but in general it contains many other additional 
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functions. As an example, consider X = L2(JR3) and 
take D = (- V 2 + 1) Vii 1, where Vo is multiplication by 
Vo(r) E L2 (JR3), and Vo(r) is real and nonzero almost 
everywhere in JR3. It is well-known that in this case 
D-1 and D-l* are Hilbert-Schmidt since 14 

exp( - I r - r' I) 
KD-dr, r') = Vo(r) I 

41T Ir - r' 

is square-integrable on JR6. Hence D"'-l = D-1* and 
the ranges of D and D* are obviously L2(JR3). Conse­
quently, D is an equipping operator. By a judicious 
choice of Vo(r) we can have <P D (JR 3) contain even locally 
square-integrable functions which diverge polynomially 
when r -? 00. Such a choice would be, for example, Vo(r) 
= exp(-r). 

3. TOPOLOGIES AND OPERATORS IN EXTENDED 
HILBERT SPACE 

Let D be an equipping operator and A an operator map­
ping:KD into itself and bounded on :K D , i.e., 

IIAIID = sup IIf IljjI II Af II D < 00. (3. 1) 
JEXD 

According to Theorem 2. 1,A t exists as an operator on 
Je1. Thus if ¢(a) is an expansion corresponding to a 
complete set of observables and f, g E Je D then by (2. 18) 

UI Ag) = J RY DUI ¢(a»(A t ¢(a) I g) D dp D(a). (3.2) 

If At ¢(a) E JeD for p-almost all a E JRV then we define 

(3.3) 

Furthermore, we have (A t ¢(a) I g) D = (At ¢(a) I g) by 
(2.6), and we can apply again (2. 18) to write 

UIAg) = f
R

2V DUI¢(a»(¢(a)IAI¢«(3» 

x (¢«(3) I g) D dpD(a)dpD«(3), (3.4) 

since the once iterated integral over JRV is equal to the 
above single integral over JR2v by Tonelli's and Fubini's 
theorems. 14 

The above relation (3. 4) is a rigorous version of the 
basic formula for expansions of operators in Dirac's 
formalism. 3 This type of procedure for deriving the 
formula (3. 2) has been also used in rigged Hilbert space 
and other alternative approaches to Dirac's forma-
lism. 7.8 It shares, however, with this approach a number 
of features which are serious deficiencies from the 
point of view of applications. First of all, the derivation 
of (3.4) requiresf,g andAt¢(a) to belong to JeD' More­
over, we must have IIAIID <. 00. This last condition can 
be difficult to verify in practice. If there are equipping 
operators D for which D -1 commutes with A, then the 
condition is satisfied by any A which is bounded in X 
and leaves !D(D) invariant, since then 

IIAfliD = IIDAfll = IIADfl1 s11A1111Df11 = IIA IllIfll D • 

(3.5) 

However, if A has a non empty continuous spectrum, then 
(cf. Ref. 16, Lemma 1) there are no Hilbert-Schmidt 
operators D -1 commuting with A for which <R( D) = JC. 
In that case this possibility is closed to us. 

The condition that (3.1) be fulfilled can be relaxed some­
what by making the more modest requirement that A 
maps a dense domain of Je D into :K D and therefore that 
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its adjoint At in Je}) is unique (provided it exists). How­
ever, even such a condition can be quite difficult to 
establish in practice. For example, this is the case with 
the derivation 2 of the formula relating the T operator to 
the T matrix in scattering theory. Hence a more general 
approach is desirable. We base such an approach on the 
following observation. 

Lemma 3. 1: Let X and Y be bounded linear opera­
tors on X which have bounded inverses together with 
their adjoints and are such that <R(X"') = <R( Y"') = JC. If 
for some equipping operator D the setsX- 1 !D(D) and 
Y- 1:D(D*) are dense in X, then II(Y* Dxt 111 Y*DX is 
also an equipping operator. Conversely, suppose that D 
and D' are equipping operators for which d 1 < d 2< ... 
and d1 <. d2 < '" are the eigenvalues of (D* D)l!2 and 
(D'''' D')1/2, respectively. If C = sup{d~d;l} is finite 
then there are pairs {X, Y} of operators with the above 
properties for which D' = [y* DX]o, where [y* DXJo = 
II{Y'" DX)-ll1 y'" DX. 

Proof: The conditions imposed on X and Y imply that 
Y'" DX and ( Y'" DX)'" d. X'" D* Y map dense domains of JC 
onto JC. Furthermore, ( y* DX) -1 = X-I D -1 y* -1 and 
(Y*DX)"'-l = y**-lD*-lX*-l are Hilbert-Schmidt 
sinceD-1 andD"'-l are Hilbert-Schmidt andX-1,y-l, 
X'" -1 are bounded. 14 

Conversely, if D and D' are given, we can decompose 
D-1 and D'-1 in the canonical form 14 

00 

D-1 = 6 IUn )An( vnl , 
n=l 

Al ~ A2 ~ ... > 0, 
(3.6) 

00 

D'-1 = 6 Iu~ )A~ < v~l, 
n=l 

A1 ~ A2 ~ .. , > 0, 

where {uJ, ... ,{ v~} are orthonormal systems of vec­
tors in X. The condition <R(D) = <R(D') = <R{D"') = 
<R(D'''') = JC implies that these systems are actually 
orthonormal bases in X. Any linear operators defined 
on the linear manifolds spanned by {u~} and {v~} so 
that 

(3.7) 

satisfy the conditions stipulated in the lemma if 

The above lemma indicates that for given bounded A it is 
possible to define an extension {A - I;)t of (A - 1;)'" as 
an operator from :K 1 to :K (D( A _ C) J by choosing I ~ I > 
II A II. In order to have such operat&rs act in one and the 
same space, we shall construct a larger space £ which 
in a certain sense contains both Je1 and JeIn(A-C)lo' 

This will make the derivation of (3.4) (in which actually 
:K1 == JetD(A-Ol

o
) a special case of the present derivation. 

Lemma 3.2: Let 8be a family of equipping opera­
tors. Denote by .£ the set whose general element is a 
D-convergent sequence {fn} of vectors in X for some 
DE 8, i.e., a sequence for which D-1fl' D-1f 2,'" is 
norm-convergent in X. Let us write Un} "" U~} for Un}' 
U:} E JZ iff II D-l(fn - f:)11 -? ° for all D E 8. The rela­
tionship "" is an equivalence relationship. If {g n} "" {g,:} 
and {afn + bg n} E £, for some a, bEe 1 then {af~ + bgn 
Eland {afn + bgn } "" {af: + bg~}. 
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Proof: The above relationship is obviouslr reflexive 
and symmetric. It is also transitive since if tf~} ~ {f;} 
as well, then for any D E 8 

IID-I{fn - f;)11 ::s IID-I(jn - i~)11 + IID-I(j~ - f;)II ~ o. 

In the same manner we verify that 

lim IID-1(ai + bg ) - D-I(ai~ + bg~)11 == 0 
n-+OO n n ... I. 

for all D E 8. Moreover if {h n } E .£ and IID-1Jhn - h~)11 
~ 0 for all D E 8, then it follows that {h~} E £. Thus 
the last statement of the lemma is true. 

Remark: The family 8 will be presumed to be fixed 
in the sequel. Hence the dependence of £ on 8 is not 
explicitly exhibited. We note that if 8 contains only one 
element D then £ == XJ*. To avoid reverting to the case 
considered in Sec. 2, we tacitly assume that in general 8 
contains two or more distinct elements. The other ex­
treme case occurs when 8 consists of all equipping 
operators in X. We believe that in general the choice of 
8 should be dictated by the problem under consideration. 

Definition 3.1: Let JC be a separable complex Hil­
bert space, 8 a family of equipping operators, and £ the 
family of equivalence classes of sequences {fn} from .£ 
with respect to the equivalence relation introduced in 
Lemma 3. 2. Denote by £ket the image of X in £ under 
the embedding which identifies each element f of X with 
the equivalence class in £ containing the sequence {in} 
with fn :::: f for n == 1,2, .... The ordered pair £ket C £ 
will be called the extended Hilbert space over 8 corres­
ponding to X; £ is the bra-space and £ket the ket-space 
of this pair (see also Sec. 7 for an alternative definition). 

We note that the above definition is purely set-theoretical 
and does not involve any explicit topological concepts. 
However, many topologies can be introduced in a natural 
manner, one of the most useful being the following. 

Definition 3.2: For each equipping operator D E 8 
define the surjective mapping lD from £ onto X by setting 

(3.8) 

for any {fn} E £ for which the above limit exists. De­
note by ~f the family of all non empty sets 

'O(j;DI, .. ·,Dn;E) =={gllllD.(j)-lD.(g)11 < E, , , 
i == 1, ... ,n} (3.9) 

corresponding to all E > 0 and any possible choice of 
Dl"'" Dn E 8, n == 1,2"", for which lD.(f) is defined. , 
The topology in which ~ is a neighborhood basis for 
each f E £ will be calleJ the strong topology in the bra­
space £. 

We note that topology induced in £ket by the strong 
topology in £ does not COincide with the Hilbert-norm 
topology of £ket obtained by the identification of £ket 
with X (i.e., the topology which makes this identifica­
tion into a homeomorphism), the second being finer than 
the first. On the other hand, the above topology deserves 
the name of strong topology since it is in fact the strong 
topology17 coinduced by the maps lVl,D E 8, of £ket 
supplied with the norm-topology of X to £. Since these 
maps cover £, this topology can be also viewed as a 
quotient topologyl7 induced by the map XDESli} from 
the disjoint union {(£ket' D) IDE 8} to £. 

We can introduce in .£ the operations 
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(3.10) 

(3.11) 

The operation (3.10) is defined for all a E (:1 and 
Un[ E £. However, (3.11) is not defined if {fn} and 
{gnJ have no common D for which Un} and {gn} are 
both D-convergent sequences. Thus, in general, £ can­
not be made into a vector space in a natural manner. 
On the other hand, £ can be decomposed into maximal 
families of vector spaces £D (which are not diSjoint!). 

Theorem 3.1: For any fixed equipping operator 
D E 8 the subset £ D of £ conSisting of the domain of 
definition of the mapping lD in (3.8) is a vector space 
under the vector operations (3.10) and (3.11). The 
multiplication by scalar operation (3.10) is continuous, 
while the vector addition operation (3.11) is not a gene­
rally continuous operation in the strong topology of £D' 
The ket space £ket is a vector subspace of £D and is 
dense in £ in the strong topology of £. 

Proof: First of all, we note that lD is well-defined 
for each equivalence class containing a sequence {fn} 
for which (3.8) exists, since if U~} ~ {fn} then 

s - limD-If~ == s -limD-I{f~ - fn) + S - limD-Ifn 

== s -limD-Ifn' 

Due to the last statement in Lemma 3.2, the vector 
operations (3.10) and (3.11) are unambiguously defined 
on all of £D' The continuity of (3. 10) is obvious. How­
ever, if for some f E £D - £D" where D '" D',D,D' E 8, 
we choose an element h of £ D n £ D" then vector addition 
(j,g) ~ f + g is not continuous at g == f - h since for 
the neighborhood 'O(h; D'; E) we cannot find neighbor­
hoods '0 (j) and '0 (g) such that '0 (f) + '0 (g) C '0 (h; D';E). 

The embedding of X in £ obviously preserves the vector 
structure of X. To see that the image £ket of the em­
bedding is dense in £, recall that any f E £ is repre­
sented by a sequence {fn} E .£ and for any given 
'0 (j; D I ; E) the vector f is in the domain of definition 
of lD' Hence IllD f - fn II < f for large no' and there-

1 1 0 
fore for these values of no the equivalence class con-
taining the sequence fn , fn ,'" belongs to 'O(j; DI ; f). 

o 0 

Remark: The vector space £D is generally not a 
topological vector spacel8 in the induced strong topo­
logy since vector addition is not continuous. By extend­
ing each mapping lD to a mapping lv of £ into X which 
is linear on each £D ,DI E 8, we would obtain many 
possible topological ~tructures compatible with the 
vector operations on £ D by noting that the ordered pair 
£ket C £D supplied with the family 8' of all such map­
pings lv is a generalized inner product space.15 By 
using Zorn's lemma we can prove the existence of a 
"vector base" <Bo in £ in the same manner l8 as for 
vector spaces (the only difference being that linear 
independence in £ can be sometimes due to the absence 
of a universally defined vector-addition operation) and 
then define such extensions lv of lD by assigning to lv f 
an arbitrary value in JC (such as the zero vector) for 
any f E <Bo - £D' This would lead to 8' and make £ 
into a composite generalized inner-product space lS 

with components (£D' £ket' 8 1
) dependent on D E 8. 

However, a topological vector structure is not essential 
in deriving the results in this paper, and therefore we 
shall not pursue this approach any further. 

Lemma 3.3: The mapping mD of £ into XJ*, which 
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assigns to an equivalence class I in ,£ representing an 
element of £D the larger equivalence class mDI in ,£ 
representing an element of XJ* containing I(i.e., 
Ie mDI C £ for all I E £]) and mDI E XJ*), maps £D 
linearly onto XJ •. This mapping is continuous if £]) and 
XJ* are supplied with their respective strong topologies 
(but generally it does not have an inverse), 

Proof: The mapping mD is obviously uniquely de­
fined for each I E £D' Linearity and continuity are 
also evident from the definitions. The typical element 
of XJ* consists of some Un} E ,£ and all other {f~} ,£ 
such that IID-l (jn - f~)11 -7 O. Since some of these {f~} 
might be such that {Di1(jn - I~)} does not strongly 
converge to zero in :re for all Dl '" D, each element of 
:KJ* will contain many elements of £D' Hence mD is not 
generally invertible. 

The above lemma shows that in general £D is much 
larger than XJ*. This is due to the fact that the equi­
valence classes of £n (determined by the equivalence 
relation of Lemma 3. 2) are much smaller than those of 
XJ*. As a consequence some objects (such as bra­
expansions) which are uniquely or almost everywhere 
uniquely defined in XJ* are not unique in £D' Hence, it 
might turn out to be more desirable to make £ smaller 
by increasing the size of the equivalence classes in ,£ 
determining its elements to insure such uniqueness. 
However, we adopt the attitude that systematic applica­
tions should provide the guidelines for such a proce­
dure. At the present stage we consider that the study 
of the largest of the conceivable choices for £ at least 
avoids the most undesirable alternative, namely that of 
having key operations (such as taking bra-adjoints) 
undefinable because of the restricted size of £. 

Theorem 3.2: There is a unique complex functional 
(,1 .) defined in £ x £ket with the property 

(jIg) = (jIg), f,g E £ket' (3.12) 

for all pairs of ket-vectors f and g, which is strongly 
continuous on £ at each fixedg E £ket. The restric­
tion of (,1') to £D* x XD is continuous in both its argu­
ments in the respective strong topologies. In £0 = 
nDE8 £D the relation (jIg) = 0 is satisfied for all 
g E £ket only by the zero vector f = O. 

Proof: We set 

<JIg) = (mD*/lg)D' f E £D*' g E x]) (3.13) 

for all I E £D* C £ and all g E J<V C £ket. The con­
tinuity and sesquilinearity of the above form on £ D* X XD 
are features inherited from the corresponding proper­
ties of ('1')]) (cf. Theorem 2.1) and of mD* (cf. Lemma 
3.3). 

To establish that (3.13) defines a single-valued complex 
functional on £ X £ket as D varies over 8, we note first 
the functional is single-valued on £ket X £ket since by 
(2.6) we have (mD*flg) D = <JIg) for any I E £ket and 
for any D E 8. This expression is independent of D 
[and incidentally it displays that (3. 12) is satisfied by 
our candidate]. Let us assume now that f E £ - £ket 

and also I E £ D* n £D* for some Dl' Dz E 8. Then 
1 2 

there is a sequence f 1'/2 , ••• E £ket which converges 
strongly to/, and therefore mD'ril> mD~fz"" converges • • 
strongly to mD'r'f in Xih (i = 1,2). Ambiguities in the 

t • 
definition (3.13) can arise only for g E X D n Xl) • But 

1 2 
for any such g 
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and, consequently, 

has the same value for i = 1, 2. 

It is obvious from the construction that ('Ig) is strongly 
continuous on £D* for each g E X D• The uniqueness 
property follows from (3. 12) and the fact that £ket is 
dense in £ (Theorem 3. 1). 

Let us assume now that (f olg) = 0 for all g E £ket. 
In view of (3.12) and the positive-definiteness of inner 
products, no 10 '" 0 from £ket could satisfy such a 
relation. To be more general, suppose that fo E £0' 
Then we infer by using (3.13) that for each D E 8 for 
which 10 E £D we have (mD*/lg)D = O. This implies 
that mD*f is the zero vec~or in XJ* and, consequently, 
for any sequence {f n} E £ in the equivalence class 
representing f we have s - lim D*-l fn = O. Since this 
is true for any D E 8 when 10 E £0' it follows that 
fo EO. 

We note that the conclusion fo = 0 does not follow if 
fn E £ - £0' In that case we shall have that s - lim 
1),*-1 fn = 0 for D in some proper subset 8f, of 8, but 
there might be other D's for which this linfit does not 
exist. In fact, for such an f 0 the functional (f 0 Ig) is 
defined only for g E U DES XD • 

10 

Another Significant feature of ('1') is that for fixed 
f E £ - £ket the functional (fl') is not continuous on 
£ket in its norm-topology (inherited from :re). In fact, 
if that were the case then (fl') would be in the dual 
:re' of:re. This is not possible since by Riesz' theoremS 
we would have that f E £ket. 

Definition 3.3: For f E £ let 'Ji. 1 denote the family 
of non empty sets 

corresponding to any possible choice of hI' ... ,hn E £ket 
for which Ulh j ) is defined. The weak topology in £ is 
the topology in which 'Ji.1 is a neighborhood base of 
f E £. 

We note that while the strong topology in £ is Haus­
dorff, the weak topology is not since there are no weak 
neighborhoods to separate the zero-vector from a zero­
like vector f, Le., any element f of .e - £0 represented 
by {I } E ,£ for which D-l f l' D-l f 2' •.• converges to 
zero for all those D for which it converges at all. 

Theorem 3.3: Suppose that A is a linear operator 
for which (nA)* ranges over the entire set 8 as D* 
varies over 8 (we shall refer to a family 8 with this 
property as being A-stable). Then A has a bra-adjoint 
A t in £ satisfying 

(Atflg) = (flAg), f E £, g E £ket' (3.14) 

for all f E .e and g E £ket. At is continuous in the 
strong topology of £ and is a linear operator from £ D* 
into £ (DA)* for any D E 8. Furthermore, the relation 
(3.14) det~rmines Atuniquely as a mapping of £ into £0 

(but not otherwise). 

Proof: If 8 is A-stable and {fn} E £ represents an 
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element f in oC D*' {A * f n} belongs to £ and represents 
an element of oC (DA)6" which we shall denote by A fJ. We 
have assumed that (DA)~ varies over 8 as D* varies 
over 8 (e.g., this will be the case if A-1 and A*-l exist 
on JC and are bounded and 8 contains all equiJ.;>ping 
operators). Hence, {fn} ~ {j~} implies {A*fnI ~ {A*f~}. 
If f E oCket then clearly A fJ is also a ket-vector. Thus, 
by (3.12) we have 

(AfJlg) = (AfJlg) = (flAg) = <flAg) 

whenever f,g E oCket • Hence At is an extension of A *. 
Moreover, if AI is another adjoint of A in oC, then 

(AI! - A fJlg) = 0 

for all g E oCket if A if, A fJ E oCo' and consequently by 
the last part of Theorem 3.2 we have Aif = A fJ. How­
ever, in general we can alter arbitrarily the definition 
of At on a zero-like vector in oC without violating (3.14). 

The linearity of At on oC D* is an obvious consequence of 
the linearity of A * on JC and the definition of A t. The 
continuity of A t follows from the observation that the 
inverse image of 'D (A fJ; D; E) under At contains 
'D (f; A *-lDi E). 

We note that if 8 consists of all equipping operators in 
JC and the bounded operator A is such that A-1 and A *-1 
exist on JC and are bounded then by Lemma 3.1 the con­
ditions of the theorem are satisfied. More generally, if 
either A-lor A *-1 do not exist or are not bounded, the 
operatq.r A, = A - ~ is such that (A - 0-1 and 
(A * - ~)-1 exist and are bounded if ~ is chosen in the 
resolvent set of A. Hence the family 80 of all equipping 
operators is (A - ~)-stable if ~ is in the resolvent set. 
Thus, we can always define the bra-adjoint At of A by 

where It is the identity operator in oC over 80 , However, 
while It maps oC D into itself, (A - ~) t maps it into 
oC (DA-,D)* so that At might not contain all vectors in oC 
in its do~ain of definition (see also Sec. 7). 

4. BRA-EIGENVECTOR EXPANSIONS AND EXISTENCE 
OF GREEN'S FUNCTIONS 

We shall convert the results of Sec. 2 so as to apply to 
extended Hilbert spaces. This will enable us to formu­
late and solve with ease problems which could be solved 
only under additional restrictive conditions if a single 
equipped Hilbert space were employed. 

Theorem 4.1: Let {Al' ..• , AJ be a complete set 
of self-adjoint operators in JC. For any D E 8 there 
is a bra-expansion ¢D(a) E oCD such that 

(4.1) 

for any f,g E JeD [Where PD is defined in (2.19)]. The 
functional (¢D(a) I,) can be extended to oC ket in such a 
manner that (¢D(a)lf) is PD-square-integrable in 
a E R v for any f E oCket and (4. 1) holds for any f, 
g E oC ket • Moreover, if D' is any other equipping opera­
tor, then P D and P D' are equivalent measures and there 
is P D-almost everywhere in IR v a bra- expansion P D,(a) 
such that 

(
dP D,(a») 1/2 

<f1¢D(a» = <f1¢D,(a» dpD(a) (4.2) 

for all f E oCket • 
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Proof: We can define ¢D(a) by applying the axiop 
of choice to select from each equivalence class in oC, 
representing an element of the expansion ¢(a) in Je;* 
of Theorem 2.2, a representative element which would 
determine ¢D(a) as an element of oCD• [The use of the 
axiom of choice can be avoided by going back to the 
construction of ¢D(a) from the spectral measure 
EAl'""Av(t.) and selecting at each a a speCific sequence 
of contracting sets t.1 :) t. 2 :) •.. ---7 {a} in the limiting 
procedure determining ¢D(a).] In view of (2.16) and 
(3.13) it is obvious that with such a choice (4.1) is true 
for any f, g E JeD' Since JeD is dense in oCket in the 11'11-
norm, we can find for any given h E oC ket a sequence 
hi' h2' ... E JeD converging in that norm to h. By insert­
ing in (4.1) f = g = hm - h n and t. = IlP, we get 

This indicates that 

(4.4) 

exists and is P D-almost everywhere unique. The so 
defined functional in h E oCket is clearly linear P D­

almost everywhere and extends the validity of (4.1) to 
any f,g E oCket • 

By using the canonical decomposition (3.6), we can re­
write (2.19) in the form 

00 

PD(t.) = 6 A:IIEA1 ..... AV(t.)u n I1 2
• 

n =1 
(4.5) 

This relationship expliCitly displays the fact that PD(t.) = 
o for some Borel set t. in IlP if and only if EA1 .. " ~ v(t.) = 
O. Hence, for any two D, D' E 8 the measures P D and 
P D' are equivalent. By applying (4.1) to two specific 
choices of expansions ¢D and ¢D' we infer that 

dp ,(0) 
<fl ¢D(a» (¢D(a) lun> =(jl ¢D,(a» (¢D,(a) lu n ) D ( )' 

dPD a 

P D-almost everywhere in IlP. According to (4. 5), the set 

(4.6) 

has PD-measure zero. Hence, the expansion 

(4.7) 

is well-defined, P D-almost everywhere, and satisfies 
(4.2) for all f E oCket • 

From the point of view of notational convenience we 
could rewrite (4.1) for t. = lIP in the form 

(4.8) 

We have to emphasize, however, that the above identity 
operator is defined only on the ket-space oCket since 
the functional (,1,) cannot be extended to oC x oC. 

Definition 4.2: Let ¢D (a) and ¢D (a) be two bra­
expansions corresponding to the saIJe complete set 
{A1, .•. , A) and let AI, A1 be two operators in the 
bra-space oC. If (Ai¢D1(Q)lf) = (A~¢D2(a)lf) at each 
f E oCket for PD;-almost all a E IlP, then we shall write 
Ai¢D1 ~ A~¢D2 and say that Ai¢Dl and A~¢D2 are weakly 
equivalent in oC. 



                                                                                                                                    

1418 Eduard Prugoveeki: The bra and ket formalism 

We note that the weak equivalence of Ai¢D and A;¢D 
implies that for PD.-almost all a E IIF the1two bra- 2 , 
vectors AND (a) and A;¢D (a) share the same weak 
neighborhood~ if they beloJg to a common £ D' The fact 
that this will not always be the case is part of the ob­
stacle which has stopped us from introducing the con­
cept of weak equivalence for any two elements of E, thus 
basing the construction of the bra-space £ on weak 
rather than strong equivalence classes. 

Them-em 4.2: If the closed operator B in £ket is a 
function of the complete set {AI' •.. ,A), i.e., B = 
F(At' ..• ,A'), and ¢D(a) is a bra-expansion for 
{At' ... , A), then 

(4.9) 

PD-almost everywhere in RV for any f E £ket. 

Proof: As a consequence of the definition14 of a func­
tion F(Al"" ,A,) of a set {At> •.• ,A) of commuting 
self-adjoint operators we have 

EA
l· .... A,,(6)F(At' ••. ,A,)h = J F(a)dE~l' .... Avh, (4.10) 

t; 
for any h E ~(B). Hence, the application of (4.1) yields 

= <JI EAl ..... Av(6)F(Al' ..• ,A)h) 

= J F(a)d<JIEAl.· ... Avh) t; a 

= J F(a) <J1¢D(a»(¢D(a)lh)dpD(a), 
fl 

where the last step follows by the Radon-Nikodym 
theorem. Since the above relation holds for any Borel 
set 6 in R v, the integrands on both sides must be P D­

almost everywhere equal. By replacing f with un and 
recalling that the set in (4.6) is of zero P D-measure, 
we arrive at the conclusion that (4.10) is true. 

In the special case F(A 1 , ••• ,A,) = A k, we get from 
Theorem 4.2 that 

(4. 11) 

Hence, if we define a bra-eigenvectm- h E £D* of an 
operator A with eigenvalue >t by the requirement that 
it satisfy the relation 

(h IAf) = A(h If), f E JeD' (4.12) 

we can state that the elements of a bra-expansion of 
{AI"" ,A) are simultaneous bra-eigenvectors of all 
the operators Al"" ,Av' 

In light of the definition of the bra-adjoint At in Theorem 
3.3 and (3.15), the relation (4.10) is equivalent to 

(4.13) 

if B is a bounded operator. 

Definition 4.2: Let {AI' .•• , A) be a complete set 
of observables in JC and let L~ (R v) be a spectral rep­
resentation spacel4 for this set, i.e .. , we assume the 
existence of a unitary transformation U of JC onto 
L~(RV) such that 

(4.14) 

If A is a closed operator in X, we shall say that A has 
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an integral representation in the spectral representa­
tion space L~(RV) with kernel KA (a,(3} if and only if 

(4.15) 

for any g E ~(A), and the function KA(a, (3) belongs to 
L~(Rv) for each fixed a E RV. 

We should emphasize that in the above definition 
KA(a, a') is assumed to be a bona fide function. Thus, 
Ak itself does not have an integral representation in 
L~(R") == L2(Rv) despite the fact that formally (cf. 
Sec. 7) 

(UAkf) (a) = ~v 6(a - (3)(3k(Uf) ({3)d"{3. 

Them-em 4.3: Suppose that 8 is A-stable. Then A 
has an integral representation (in the sense of Defini­
tion 4.2) in a spectral representation space L~(Rv) of 
the complete set {A l' ••• , A J if and only if At ¢D(a) is 
a ket-vector for .IL-almost all a E R v and at such a E R v 

(4.16) 

at .IL-almost all (3 E RV for at least one bra-expansion 
¢D(a ). 

Proof: Since At exists by Theorem 3. 3, we can use 
(4.1) to write 

In view of the assumption At ¢D(a) E £ket' we can apply 
(4.1) again: 

(A t ¢D(a) Ig) == JRv (A t ¢D(a) I ¢D( (3»(¢D( (3) Ig) dp D( (3). 
(4.18) 

The relations (4.14) imply that 

(UEA
l' .... Av(6)f) (a) == Xt;(a) (Uf) (a). (4.19) 

This fact in conjunction with (4.1) implies that 1.1 and 
PD are equivalent measures. Hence, we can deduce from 
the relation 

JRv (Uf) (a) (Ug) (a)d.IL(a) == <JIg) 

= JRv <JI ¢D(a»(¢D(a)lg)dpD(a) (4.20) 

that there is a real I.I-measurable function wD(a) such 
that for any f E £ket 

(4.21) 

.IL-almost everywhere. Combining (4.17) and (4.18) and 
comparing the result with (4.15), in light of (4.21) we 
arrive at the conclusion that 

holds for PD-almost all a E R" if among the different 
bra-expansions corresponding to D E 8 we choose the 
one for which wD(a) == O. This implies that the above 
relation is also satisfied by all vectors g in any fixed 
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countable set ~o c ~(A) at all a E D.o' where 
j.L(JRu - D.o) = O. By choosing ~o dense in Je, we can ex­
tend the validity of this conclusion to all g E Je since 
KA(a,') E £ff(Ru), and thus conclude that (4.16) holds. 

Conversely, if KA(a, {3) exists in the sense of Definition 
4.2, then we can combine (4.15) with (4.21) to arrive at 
the relation 

(¢D(a) IAf) = [dj.L(a) ll/2 exp[- iwD(a)] 
dPD(a)J 

x fRu KA(a, {3) (Uf) ({3)dj.L({3). 

By applying the Schwarz-Cauchy inequality in Lff(R u), 
we obtain 

I (A t¢D(a) If) I :5: [ dj.L(a) J 1/2 (j I KA(a, {3) 12 dj.L({3»)1/21If II. 
dpD(a) 

By Riesz' theorem the above inequality implies that 
At¢D(a) E £ket. Comparison of (4.15) with (4.18) shows 
that (4. 16) is satisfied. 

Let us agree to write for f, g E £ 

UIAlg) = (Atjlg) (4.22) 

for some operator in £ket if and only if A tj E £ket. In 
that case, (4.16) assumes the form 

The above results have an immediate bearing to the 
question of the existence of a Green's function GA(a, {3; ~) 
for an operator A at the point ~ in the resolvent set of 
A. Substituting RAm = (A - ~)-l for A in the above 
considerations, we can apply Theorem 4.3 and arrive 
at the representation 

. (dPD(a) dPD({3»)1/2 
GA(a,{3,~) = (¢D(a) IRA(n I¢D({3» -( -) -(-) 

dj.L a dj.L {3 (4.24) 

for the Green's function of U(A - ~)U-l in Lff(RU). 

5. APPLICATIONS TO TIME-INDEPENDENT 
SCATTERING THEORY 

Let us consider now two self-adjoint operators H and Ho 
in the separable Hilbert space Je. Physically H could be 
the total Hamiltonian and H 0 the free Hamiltonian or one 
of the cluster Hamiltonians (in case that we are dealing 
with multichannel scattering problem). To avoid incon­
sequential notational complications, we assume that the 
wave-operators 

n = s -lim n 
± €"""'+O ±€ 

(5.1) 

exist as partial isometries with initial domains Je. 
However, in order to allow for the possibility that long­
range forces are present, we assume that1 9 

+00 ± iE 
= f EH(dA) Z ± ' (5.2) 

-00 A - Ho ± iE 

where Z ± are bounded operators determined20 by the 
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interactions acting between the particles of the system 
and 

Ho = too AdE~O, H = tOO AdE~. (5.3) 
-~ -~ 

Suppose that {AI' ... , AJ is a complete set of obser­
vables and Ho = h(A1"" ,A). If ¢D(a) is a bra­
expansion for {AI' ... , A J for which at any f E JC 

lim (¢D(a) I Z:(H - A ± iE}-lf) 
A-+h(cx) 

= (¢D(a) I Z:(H - h(a) ± iE)-lf) (5.4) 

at P D -almost all a E R U , then 

The proof of the above relation (5.5) is essentially the 
same as the proof of Theorem 4.1 in Ref. 2 supple­
mented by the observation that the restriction of having 
n: E map some Xv into itself can be dropped when work­
ing in £ rather than in XJ since we can work with f in 
~ (D(n : E + m at fixed I ~ I > II Z ± II. 
In view of Definition 4.1, the relation (5.5) states that 
the following relation of weak equivalence holds: 

Hence, (5. 1) implies that 

¢b(a) = n:t¢D(a) = 'f w -l.i.m. [iEZ:(H - A 'f iE)]f¢D(a) 
€-+ +0 

(5.7) 

if we agree on the following notation: if Ai, A~, ... is 
a sequence of operators in £, we write 

(5.8) 

if and only if for any f E £ket 

We note that the concept of convergence contained in 
(5.8) is related to convergence in the weak topology of 
£ to the extent that (5.9) implies weak convergence of 
some subsequence of {A!¢D(a)} to At¢D(a) for PD-almost 
aUaERV. 

The equations (5.7) are equivalent to the type II Lipp­
mann-Schwinger equations for distorted waves modi­
fied20 so as to apply also when long-range forces are 
present. Similar considerations yield the equations 

¢D(a) = nt¢t(a) = 'f w -l.i.m. [iEZ±(Ho - A 'f iE]t¢t(a). 
e;-+ +0 

(5.10) 
An application of the extended Hilbert space formalism 
also provides a very straightforward method for decid­
ing when the T operator is an integr<11 operator in the 
spectral rel,lresentation space of some complete set 
{A l' ••. , A vI of observables. In fact, after writing2 

we conclude by applying Theorem 4.3 [assuming that 
8 has been chosen (HjnJ-stable; cf. also Sec. 7] that a 
further expansion involving g will be possible if and 
only if (Hjr2Jt¢D(a) E £ket for PD-almost all a E RU • 
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Using Theorem 4.2 we arrive at the expression 

(JITg) = lim ~ Iv dPD(cJl)J(o.) lv dpD({3) 
€- +0 'If R R 

x [(h(o.) - h({3»2 + £2]-1 «HjflJt<pD(o.) I <PD({3»i({3) 
(5. 12) 

for the transition operator T, relating this operator to 
the T matrix 

T(o., (3) = (<PD(o.) I HjflJ <PD({3)) = «HjflJt<pD(o.) I <PD({3). 

(5.13) 

6. FIELDS AT A POINT AS OPERATORS IN EXTENDED 
FOCK SPACE 

Another area of quantum physics in which the extended 
Hilbert space formalism can be a very handy mathe­
matical tool is quantum field theory. In this section we 
shall use the concept of expansion in bra-eigenvectors 
to define the concept of free field at a point. Rigorous 
formulations of this concept in the context of nested 
Hilbert spaces21 and the £ formalism22 have been pre­
viously considered, but their practical applicability is 
limited by the relative intricacy of the constructions. 
In contradistinction, the fields at a point to be defined 
in the sequel have all the desired basic properties and 
lead to straightforward definitions of practically impor­
tant objects, such as normally ordered polynomials in 
the fields, integrals of such polynomials, etc. 

We shall work in extended Fock space. Fock space itself 
is constructed by means of direct sums and tensor pro­
ducts from the single-particle spaces. Hence, if £,. 
denotes the bra-space of JC,., let us simply agree to 
denote by EB"£k and 1Si,.£,. the bra-spaces associated with 
EB,. JC,. and ISik JC,., respectively. 

To avoid cumbersome notation, we consider the case 
when only one kind of particle is involved. Let 5" 1 de­
note the one particle space, and 5"0 the one-dimensional 
complex Hilbert space describing the Fock vacuum. We 
shall let Sn stand for the symmetrizer or antisym­
metrizer, depending on whether the particle is a boson 
or fermion, respectively. Thus, the n-particle compo­
nent 5" n of the Fock space 5" will contain as a dense set 
the linear manifold of all vectors f = EB~o f Ill) with zero 
f (m) components for m '" nand 

f lll)=S (f lSi .. • 1Sij,) = J:.. 6 (±1)7f(5)J:. lSi··· lSi J:. , 
n 1 n n! 5 '1 'n 

(6.1) 
where s varies over the permutation group of n objects 
and 'If(s) is 0 for an even and +1 for an odd permutation 
s = (il"'" in)' We define the n-particle component 
Sn of the Fock bra-space S to be the closure of the 
ket-space 5" n in the strong topology of the extended Hil­
bert space EBn~O 5"!n c EBn~o s!n. This definition is con­
sistent with the fact that by Theorem 3.1 the ket-space 
5"!n is dense in the bra-space s!n in the strong topology 
of that space. 

Let {A l' ••. , A J be a complete set of observables in 
the one-particle space 5" J. (such as spin and momentum 
or spin and position, etc.) and let D E 8 1 be an equip­
ping operator for 5" l' Denote by <PD(o.) the corresponding 
bra-expansion and let (<PD(o.) I f) be a given extension of 
the functionals (<PD(o.) I'), 0. E IlP, originally defined only 
for f E J{D C 5"1 to all f E 5"1' We define then a corres­
ponding annihilator t/JD(o.) on vectors in 5"n of the form 
(6.1) by 

t/JD(0.)Sn(f1 0···0 In) = n 1/2 ~ (±1)n(5) 

x (<PD(o.) II) fi lSi· .. lSi Ii' (6.2) 
1.1 2 n 
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(6.3) 

where I n-1 is the identity operator on 5"n-1' i.e., by (4.8) 

I n - 1 = f I <PD(o.l) lSi ... lSi <pD(o.n-1»dp(o. 1) ... dp(a,.-l) 

x (<PD(o.l) lSi ••• lSi <pD(o.n-1) I. (6.4) 

It should be emphasized, however, that t/JD(n)(o.) is not a 
closed linear operator (except when all observables 
A l' ••. , A v have only point spectra) since by the closed 
graph theorem that would imply that it is bounded, and 
therefore that t/JD(o.) has an adjoint t/J;(o.) in 5:. It is 
well-known that this is not the case. The reason why 
we could extend t/JD(o.) to 5" n is that in defining the func­
tionals (<PD(o.) I f) for all of f E 5"1 we have isolated one 
of the many possible extensions of the original func­
tionals in which I varied over JeD' 

The bra-adjoint t/JJ(o.) is easily established to be the 
creator which acts on vectors in Sn of the form (6.1) 
in the following manner: 

t/JJ(0.)Sn / 1 lSi ••• lSi fn 

= Vz + 1)-1/2Sn+1<PD(0.) lSi f1 1Si ... lSifn • (6.5) 

Hence, if so desired, the restriction t/JJ<n)(o.) of t/JJ(o.) to 
Sn can be described as an operator with range in Sn+1 
by writing 

We note that normally ordered polynomials:~: of crea­
tors and annihilators are perfectly well-defined opera­
tors from the ket-space 5" to the bra-space S. More­
over, the concept of "smearing" such normal products 
as 

with any function J o in L~ X(l+m) (Rv(l+m» which is 
D ~ ~ 

appropriately symmetrized, i.e., for which Sl+mlo = 10 , 

~(lo) = J v(l+m):~(o.l' ••• , o.l+m): J O(o.l' ••• , o.l+m)dp D(o.l) 
R 

x· .. dp D(o.l+m) (6.8) 

is defined by Theorem 2.3. The restriction of ~(Jo) to 
5" I is a bounded operator from 5" n to 5" l+n-m' To see that 
this last statement is correct, note that by (6. 2) and 
(6. 5) if n ?: m and fOE 5" n has its component I (n) in 5" n 
given by (6.1), then 

: ~(0.1' ••• , o.l+m): I(n) 

=[ n(n - 1) .. • (n - m + 1) ) 1/2 

\(Z + n - m + 1)" . (n - m + 1) 

X Sl+n-m+l ••• Sn-m+1 6 (± 1)7f(5) 
5 

(6.9) 

The notation is such that each of the above symmetrizers 
S. acts on the lastj vectors of the tensor product in (6.9). 

} 
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Let U 1 denote the unitary transformation 

(6.10) 

of 5'1 onto LtD (IIF). If Un = l1!n is the corresponding 
unitary transformation of 5'n onto SnL~ xn(Rvn) and 
_ _ D () 

g = lJ,.g, h = Umh for g E 5' l' h E 5' m' then by using 6.9 
and (2. 23) we easily get 

: if?(i0 h): f(n) 

_ ) n(n - 1) • . • .} 1/2 

- t (l + n - m + 1)··· 

X Sl+n-m+l· •• Sn-m+1 ::0 (± 1)"(5) 
5 

x {fz If. @ ••• ° f > gO f 0··· ° f· 
'1 "m m Zm+l in' 

(6.11) 

where (·1·> m is the form (3.12) in 5' m C 9 m. Since this 
form becomes the inner product on 5' m )Vhen _h E 5' m' 
the relation (6.11) establishes that: if?(g* ° h): is boun­
ded when :r:estricted t~ 5'n._Note that the "smeared" 
fields IJID(fo) and IJIJ(fo)' fo E L~ (lIF), are special 
cases of the general expression irf\6. 8). 

In light of the above remarks, this means that, as expect­
ed, the smeared fields are bona fide operators in 5' if 
the smearing function Jo belongs to SI+mLtvx(t+m)(Ru(l+m». 

Theorem 2.3 enables us to define if?~Jo) as a unique 
element of JeJ* for general case of j E (P (l+m)(R u(t+m». _ rP 
However, in general mil if?(f oU (n) contains more than 
one element of 9 D. By (6.11) we still get uniqueness for 
mil if? (Jo)j(n) as long as f(n) E JeD and g E 90 = nv 9 D. 

But if j E 9 - 5' the integral in (6.8) will in general 
depend not only on J but on the expanding sequence 
.6. 1 c .6.2 C ••• used ~n defining if? (j)f(n) as in (2.27). 
Only in case that if? (j o)f (n) E g 0_ = n 9 v can we be 
assured of the uniqueness of if? (j 0) in 9 D by Theorem 
3.3. 

Since IJID(Ct.) is an operator on 5' and not on the entire 
bra-space g, objects which are not normally ordered 
[e.g.,IJID(a)IJIJ(,8)] are not well-defined as operators from 
9 to g. This is to be expected since (anti -) commuta­
tors such as [IJID(a), IJIJ(,8)]± contain 0 functions rather 
than only bona fide functions. In fact, we easily infer 
from (6.2) and (6.5) by the usual algebraic manipula­
tions that 

(6.12) 

for any J E L~ (R v). The above relation reflects the 
o -function natJre of the above (anti - ) commutator, which 
is, however, well defined for smeared-out creators 
since IJIJ(]) is an operator from 5' to 5'. 

Let F(A 1 , ••• , AU> be a self-adjoint operator-valued 
function of AI' ... ,Av. Using (6.3) and (6.6) we easily 
establish that 

n+1 
=; ::0 lk0F(Al' ••• ,A)0In_k. (6.13) 

n~O k~1 

For example, the particle-number operator is obtained 
as a special case for F(a) == 1. Other objects, such as 
the global energy, momentum, angular momentum, etc., 
are well-known special cases of (6.13). 
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7. DISCUSSION 
The main purpose of introducing the concept of extended 
Hilbert space is to supply a mathematical framework 
which is rigorous and at the same time simple and easy 
to apply to problems in quantum physics. The facility in 
applying a formalism depends to a great extent on 
whether certain key operations can be performed with 
ease under a variety of circumstances without being 
restricted by a load of conditions which have to be met 
to validate such applications and which might be diffi­
cult or impossible to verify in practice. In our case we 
deem that the operation of taking the bra-adjoint of an 
operator is such a key operation. We note that Theorem 
3. 3 which deals with this operation does require the 
condition of A-stability to be met as a precondition for 
its guaranteeing the existence of At. We have shown 
how in the problems treated in this paper that condition 
can be easily satisfied. However, in the long run it 
might turn out that this condition severely hampers the 
applicability of the formalism. Therefore, we present 
here an alternative definition of an extended Hilbert 
space (see also Ref. 23). 
It is easily seen that ,!he relation Un} ~ {g;,} by which 
two sequences from .c (for given 8) are identified iff 
II! n - gn II ~ 0 as n ~ ex) is an equivalence relation. Let 
us denote by <B the family of all corresponding equiva­
lence classes. Mter identifying each element f in :Ie 
with the equivalence class containing the sequence f, 
f, ... , we obtain a subset Je of <B as the image of this 
identification. The alternative extended Hilbert space 
consists now of the ordered pair Je C <B, where Je and <B 
play the role of alternative ket and bra spaces, res­
pectively. 
It is easy to see that now for any operator A which has 
an adjoint A* and for which {A*f,,) and {A*gn} belong 
to £, we shall have that {A *fn} ~ LA *gn} whenever 
{f n} ~ {g n} due to the fact that A * is closed.14 Hence 
the bra-adjoint At of A will be always unambiguously 
defined so that the A-stability of 8 is not required. 
Strong and weak topologies can be introduced in Je C <B 
in the same manner as in .cket C .c, and the construction 
of (·1·> proceeds in the same manner. All the theorems 
of Secs. 3 and 4 stay true without even having to require 
the A-stability of 8. Hence, from the point of view of 
applications, Je C <B seems to have marked advantages 
over .cket C .c. 
The disadvantages of J( C <B in comparison with .c

ket 
C £ 

seem to be more of a pure mathematical nature. In 
Je C a3 the strong topology is not Hausdorff. Further­
more, Je C <B does not have the nice feature of reducing 
to :Ie C JeJ in the special case when 8 = {n*}, so that 
equipped Hilbert spaces are not special cases of alter­
native extended Hilbert cases. 
One object which plays a prominent role in the formal 
manipulations with the bra and ket formalism but has 
not been given a rigorous counterpart in the preceding 
sections is the "inner product" (jIg) of two bra-vectors 
f,g in £ (or <B). The obvious reason for this intentional 
omission is that in general such an object cannot have 
a meaning as a complex number [e.g., witness the "inner 
product" of a plane wave exp(zkr) with itself, which 
yields a divergent integral]. However, a rigorous mean­
ing can be given to the symbol (cf>v\l)(O').I ¢v(2)(,8», where 
¢J 1)(0') and ¢D(2)(,8) are any two bra-expansions, since 
such an object can be treated as afunctional on 
L~D(1) x L~D(2). We Simply set by definition 

I (uP)f) (0') (¢p)(a) I ¢P)(,8)) (UJ2)g) (,8)dPP>(O')dPP)(,8) 

=: <fig), (7.1) 
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where UJl) and UJ2) are defined by (2.20). Such a defini­
tion will obviously allow the above-mentioned formal 
manipulations, but might be easily deemed to be of a 
trivial nature. It has to be remembered, however, that 
any bra-vector is a limit of ket-vectors in the strong 
topology of the extended Hilbert space. Hence (7.1) is 
equal to 

~~ J (UDf) (a) ( CPJ l)(a; n) I cpJ2)( 13)) 

x (UP)g)(J3)dpp)(a)dp P)({3), (7.2) 

where {<t>Jl)(a;n)}~l is some sequence approximating 
<t>Jl)(a). We note that each 

(7.3) 

is a perfectly well-defined complex function, which thus 
provides an approximation of the functional (7.1). 
Moreover, in some cases it might happen that 

(7.4) 

exists p Jl) X P J2) almost everywhere (as, for example, 
in the case of the expansions for .position and momentum 
in quantum mechanics). 

We can generalize (7.1) to give meaning to the symbol 
(cpp)(a) IA I <t>J2)(J3» by setting 

J (cpJ l)(a) I A I <t>z}2)( 13» (U (2) g) (J3)dp J 2)({3) 

= lim J (A *cpp)(a; n) I <t>P)(J3»)(U(2)g) (J3)dp J2)( J3} 
n-OO 

(7.5) 

for p Jl)-almost all a. The above definition extends the 
scope of the notation encountered in (4.23), which now 
corresponds to the special case when CPJl} =:; cpJ2). 
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Irreducible tensor operators of a finite group G are discussed as elements of the group algebras of 
G0n (n = 1,2,3, ... ). Formulas are given for the number of times that an irreducible tensor 
operator of a certain rank can be constructed in these algebras and more specifically how often they 
can be constructed from the elements of a fixed class of conjugate elements in G0n (n = 1,2,3, ... ). 
Some of results are interpreted in the framework of the duality between classes and irreducible 
representations in finite groups. 

1. INTRODUCTION 

Recently there has been much discussion in the litera­
ture concerning the possibility of constructing irreduci­
ble tensor operators in the group algebra of a finite 
group (Refs. 1-6). In Ref. 1 Gamba gave a preliminary ex­
ploration of the possibility of constructing such tensor 
operators. In Refs. 2-4 Killingbeck explOited this idea 
somewhat further, mainly in view of applications in cry­
stal field theory. In Ref. 5 De Vries and Van Zanten 
showed that the Dirac matrices can be considered as ir­
reducible tensor operators of the Dirac matrix group. 
This idea was used to study Fierz transformations, 
which playa role in weak interaction theory. Yet an­
other application of this same basiC concept can be 
given in treating the quantitative splitting of a degener­
ate energy level under the action of a symmetry-break­
ing Hamiltonian, which was recently discussed in group 
theoretical terms by Biedenharn and Gamba in Ref. 7. 

Most of the discussions of tensor operators con­
structed in the group algebra are intuitive and not ex­
haustive. In Sec. 2 of this paper we shall discuss the 
precise relationship between these tensor operators and 
the conventional tensor operators as used, for example, 
in the theory of angular momentum, or, more generally, 
in the theory of SV(n) (cf. Ref. 8). It will be shown that 
tensor operators constructed in the group algebra of a 
finite group 9 suffer from a lack of generality. In the 
first place it is not possible in general to construct ir­
reducible tensor operators of an arbitrary rank in the 
group algebra and secondly the nondiagonal reduced 
matrix elements of those tensor operators which can be 
constructed in the group algebra all vanish. To avoid 
these restrictions one can embed 9 in a larger group 
and try to construct tensor operators of 9 in the group 
algebra of this larger group. In Sec. 3 we take for such 
larger group direct products gsn (n = 2,3,4, ... ) of 9 
with itself. This turns out to be a natural and powerful 
embedding, which gives rise to more general tensor 
operators, which have nondiagonal reduced matrix 
elements unequal to zero. 

In Sec. 4 we discuss problems concerning the number 
of times that an irredUCible tensor operator of a certain 
rank can be constructed in the group algebras of S<9n 
(n = 1,2,3, ... ) and more specifically how often they can 
be constructed from the elements of a fixed class of con­
jugate elements in these groups. Furthermore, we prove 
that the irreducible representations of 9 which corres­
pond to tensor operators constructible in the above men­
tioned group algebras, are just the irreducible represen­
tation of the quotient group 9 /3' where 3 is the centre 
of g. 

In Sec. 5 we give some explicit constructions, to illus­
trate the techniques and some of the properties discussed 
in Secs. 2, 3 and 4. 
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Finally, in Sec. 6, we interpret some results of the 
previous sections in the framework of the duality bet­
ween classes and irreducible representation in finite 
groups, as recently discussed by Gamba, Robinson, De 
Vries and Van Zanten (see Refs. 1, 9,10, and 11). It will 
be shown that the properties of irreducible tensor 
operators constructible in the group algebras of S sn 
(n := 1, 2,3, ... ) can be cast in a form, strikingly dual to 
properties of commutators in g. A list of dual items 
concerning irredUCible tensor operators and commuta­
tors has been added at the end of Sec. 6. 

2. PRELIMINARY REMARKS 

In the literature one can find the concept of a tensor 
operator defined with various degrees of precision. In 
this paper we shall use the following rigorous definition 
(cf. Refs. 8, 12-15). Let 9 be a compact group with ele­
ments R, 5, ... . Let R -> V R be a representation of S by 
operators on a Hilbert space 'D. A tensor operator T 
with respect to 9 is a set of operators 

T = {T ex: ex := 1,2, ..• ,q}, (1) 

the elements of which are transformed into linear com­
binations of themselves according to the transformation 
law 

q 

V RT exU-i = ~ Dsex(R)T s' (2) 
S=1 

for all ex = 1,2, .•• ,q and for all REg. The matrices 
D(R) provide then a matrix representation of g. We 
suppose that the product of the operators on the lhs of 
Eq. (2) and the linear combination of the operators on 
the rhs of Eq. (2) have a meaning in the usual sense as 
products and sums of operators acting in the Hilbert 
space 'D. If the representation matrices D(R) happen to 
be the matrices of an irreducible representation (j) the 
tensor operator is called an irreducible tensor operator 

Tj := {T~ : m = 1,2, ... , (j]), (3) 

where (j] is the dimension of the irredUCible representa­
tion (j). Instead of Eq. (2) one has now 

V Tj V-I =" D (j) (R)Ti R m R L.J m'm m· 
m' 

If one considers irreducible tensor operators which 
are elements of the group algebra (Ref. 16, p. 108), one 
uses the following definition (Ref. 1-6): 

RT~Wl = ~ D;:!m (R)T~. 
m' 

for all elements RES and all m. 

(4) 

(5) 

The product on the lhs and the summation on the rhs of 
Eq. (5) now have sens e in the group algebra A (S ). It is 
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obvious that this definition differs from Eq. (4). If one 
takes for R and Tin of Eq. (5) representation matrices 
of an arbitrary representation of the group (which gives, 
of course, also a representation of the group algebra), 
we arrive at a formula which is just a special case of 
the conventional definition (Eq. (4)) of irreducible tensor 
operators. However, manipulating in this way we shall 
never obtain the most general form of an irreducible 
tensor operator. The tensor operators which we get by 
using Eq. (5) with Tin taken from the group algebra al­
ways possess the property that their representations are 
reduced to block form as soon as one reduces the rep­
resentation of the elements R to block form, owing to 
the fact that the representation of the group algebra is 
reduced simultaneously with the representation of the 
group. It is then apparent that the reduced matrix 
elements (j'11 Tillj") are equal to zero for (j'),c (j"). 
This is what we meant by saying that a tensor operator 
which is an element of the group algebra never gives 
rise to the most general form of a tensor operator as 
defined by Eq. (4) (cf. also Ref. 2). 

If we restrict ourselves to tensor operators which are 
elements of the group algebra, the matrix elements 
(j'm' I Tt,. [j'm") vanish identically unless (j') = (j") and 
{j'jj'} ,c O. [The 3j symbol {jJ:J3} denotes the number 
of times that the irreducible representation (h) is con­
tained in the Kronecker product (j 1) 181 (j 2) of the ir -
reducible representations (j1) and (j2)' see Ref. 16, 
p.148.] From this we see that only such tensor opera­
tors Tt,. can possibly occur in the group algebra if there 
exists a representation (j') such that 

(j) C (j') i& (j'*), (6) 

where (j'*) denotes the complex conjugate representa­
tion of (j'). Equation (6) is a necessary condition for 
Ti to be constructed in the group algebraA(S). In 
Sec.4 we prove that Eq. (6) is also a sufficient condition. 

3. CONSTRUCTIBILITY OF IRREDUCIBLE TENSOR 
OPERATORS 

In Eq. (5) the Tt,. are elements of the group algebra 
and thus linear combinations of the group elements. 
The coefficients in these expressions depend on the 
matrix elements Dm<!~ (R), but are unknown a priari. In 
order to study how to determine these coefficients, we 
take instead of a linear combination just one group ele­
ment C from a class of conjugate elements e k and see 
how it is transformed under the operator 

(7) 

If R runs through the set of group elements,RCR-1 
runs through the elements of the class e k' From this it 
is clear that the elements of a fixed class transform 
among each other under the operations PRo As is known, 
the PR form a group (the group of inner automorphisms) 
if one defines the product P RP s as the operator P RS (see 
Ref. 17). This group is isomorphic to the quotient group 
8/',&. where 3- denotes the center of S (3- E ~ if RZR-1 = 3-, 
"IR E S). 

We see that under the transformations of Eq. (7) the 
g k elements of the class e k can be considered as the 
basis elements of a representation space of the group of 
inner automorphisms. This representation is a permu­
tation representation. (cf. Ref. 18, § 187), i.e., every row 
and every column contains one element equal to 1, 
whereas all others equal O. Because of the fact that S is 
hom orphic to S I~, this permutation representation is at 
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the same time a representation of S. In general this 
representation is reducible. If we decompose it into ir­
reducible constituents then in the representation space 
we get linear combinations of the elements of the class 
e k' which are the basis elements of an irredUCible rep­
resentation space under the operations PR of Eq. (7). It 
is clear that we get irreducible tensor operators in A(S) 
in this way. From these considerations it is also evident 
that the tensor operator T#" can only appear as tensor 
operator in A (S), if the irreducible representation (j) of 
S is at the same time an irreducible representation of 
the group S 13. This implies 

x (j)(Z) = [j], "I Z E 3, (8) 

where X (j)(Z) is the character of Z in (j). 

This again is a necessary condition for Tj to be an ir­
reducible tensor operator inA(S). However,Eq. (8) is 
not a suffiCient condition although it is difficult to find a 
counter example. The only counter example we could 
find is a finite group of order 6048, called U3 (3) in the 
mathematical literature. (Cf. Ref. 19, where a character 
table of this group is given.) For this group Eq. (8) is 
satisfied, but one can verify by using Eq. (6) or Eq. (13) 
that the six-dimensional irreduCible representation of 
this group does not correspond to an irreducible tensor 
operator constructible in A (S ). In Ref. 6 an example is 
given illustrating how the irreducible tensor operators 
of the symmetric group S3 can explicitly be found by re­
duCing the permutation representation generated by the 
elements of a class. 

We already pOinted out that the tensor operators in 
the group algebra A (S) are of a restrictive nature, 
because it is not possible to construct tensor operators 
corresponding to all 0) and those that can be constructed 
have the property that only their diagonal reduced matrix 
elements can be nonzero. To avoid these restrictions 
one can try to embed the group S in a larger group g 
and construct tensor operators of S in the group algebra 
ofg. 

A natural and powerful embedding, which readily sug­
gests itself is to embed S in S 181 S, the direct product of 
S with itself and more generally in S 181 S 181 ... 181 S = sen 
(n = 2, 3, ... ). In particular, the isomorphism S ~ S* 
S * ... *8 = S *n is considered, where S *n denotes the dia­
gonal subgroup of g en, conSisting of the elements 
(R, R, ••• ,R) of sen. We now consider tensor operators 
Tj of the group 8, which are elements of the group 
algebraA(S 1818 181 ... 1819) =A(8 en ). To this end we 
generalize the defining relation (5) as follows: 

(R,R, •.. ,R) Tt,. (R,R, •.. ,R)-1 = '6 Dm(1~ (R)TIn" 
m' (9) 

where (R,R, .•• ,R) i~ an element of S*n and D(j)(R) is 
again the representation matrix of the element R of S in 
the representation (j). In the next section we shall see 
that in this way one can construct all tensor operators 
transforming as irreducible representations of the 
group 9 I~ (i.e., those representations for which Eq. (8) 
holds). Moreover, the nondiagonal reduced matrix 
elements (j'1I Tillj ") will in general no longer be zero. 

Another aspect of the embedding of S in 8 en is that it 
leads one to consider a certain kind of duality between 
classes and irreducible representations. This will be 
discussed in detail in Sec. 6. To construct tensor opera­
tors corresponding to an irreducible representation (j) 
of S which is not a representation of S /?" one has to 
embed S in other groups than sen. We shall give an 
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example of such an embedding in Sec. 5. We have not 
been able to solve the general problem of finding a 
group g in which S can be embedded such that all tensor 
operators of S can be constructed in the group algebra 
of g. 

Because of the fact that S /71 is isomorphic to the 
group of inner automorphisms we might call tensor 
operators which can be constructed in A (S en) inner ten­
sor operators. Tensor operators which cannot be con­
structed in A(sen), we might call outer tensor operators. 
Whether there is any relationship with outer automor­
phisms is not known to us. 

4. NUMBER OF TIMES TENSOR OPERATORS OCCUR 

We now want to discuss the problem whether an ir­
reducible tensor operator of rank j can actually be con­
structed in A (S) from the elements of a fixed class e k 

and more specifically how often it can be constructed 
from these elements (cf. also Ref. 1). We define a 1 (j; k) 
to be the number of independent ways that a tensor opera­
tor of rank j can be constructed from the elements of 
e k' Then one has 

* * . 1 . ek 1" (j) ek 
a1();k) =g 6 x(})(R)x (R) =g L.J giXi Xi • (10) 

REg • 

In this equation X ek(R) denotes the character of the 
element R in the permutation representation generated 
from the class e k' whereas g is the number of elements 
of S. It can readily be shown that giXi ek is equal to the 
number of commuting pairs of elements from e k and e i • 

We shall call this number Ni k = N ki' Equation (10) now 
becomes 

( . ) 1" (j) 
a 1 );k =g f'NikXi • (11) 

This equation was already given by Gamba (Ref. 1). 

Now for (j) = (1 1 ) (the trivial representation) the sum­
mation in Eq. (11) can be performed and gives 

(12) 

From this we see that a tensor operator of rank (1 1), 

can be constructed exactly once from the class e k' 
(This tensor operator is the class sum.) 

From Eq. (11) it follows more generally that an ir­
reducible tensor operator of rank j occurs at most [j] 
times in a class e k' because 

( .. k) - 1 "~T (j) [ .] 1 "N - [ .] a 1 ), - - L.J "'ikXi ~ ) - L.J ik - ) • gig i 
(13) 

In the case of simply reducible groups (Refs. 12 and 
16) we can express the number Nik in terms of 6j sym­
boIs. One finds 

N. =~ 6 (_1)jl+j2+ 2j ,[.,]{j'j'j1}. ~.iJ.) (~) 
.k g ) .,.,. g,gkX. Xk . 

j 'hh ) ) 12 (14) 

[See Ref. 20, Eq. (33).] 

Hence 

(15) 

From this formula we see again that tensor operators 
of rank j can occur in A (S) only if there exists a repre-
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sentation (j') with the property that (j) E (j') (9 (j')­
note that for a simply reducible group (j'*) = (j'). In 
particular, tensor operators corresponding to half in­
teger representations (see Refs. 12 and 16) of a simply 
reducible group do not occur in the group algebra A (S ). 
For the case of the Dirac matrix group and the quater­
nion group this was already observed in Ref. 5. For an 
arbitrary one-dimensional representation (l i ) we can 
apply Eq. (1) of Ref. 21 giving 

a1(l i ;k) = gk 6 (- l)(l;>+h+(l;>e~ {jj1J{jjj2hkj~. 
g jj2 (16) 

We shall now give a criterion of a somewhat different 
nature with which one can check whether a tensor opera­
tor of rank j can be constructed from the elements of a 
class e k' First we present the following theorem. 

Theorem 1: Let :Jt(C) be the normalizer of the ele­
ment C from the class e k' The number of times that an 
irreducible tensor operator of rank j can be constructed 
from the elements of e k is equal to the number of times 
that the trivial representation (1 1 ) of :rr.(C) is contained 
in the irreducible representation (j) of S restricted to 
the subgroup :Jt(C). 

For the proof of this theorem we refer to p. 207 of 
Ref.18. Our Theorem 1 is in fact part of the contents of 
Theorem II of that paragraph. If one takes for the sub­
group H of Theorem II the normalizer :Jt(C) (Le., the 
subgroup of elements of S, which commute with C) the 
above theorem follows. 

Theorem 1 gives rise to the following corollary. 

Corollary: A tensor operator of rank j can be con­
structed from the elements of the class e k if and only 
if the irreducible representation (j) of S restricted to 
the subgroup :Jt(C) contains the trivial representation 
(1 1 ) of :Jt(C) or 

6 x(i)(R) > o. 
R E :Jl.(C) 

This criterion can be applied easily for practical 
calculations. A direct proof of this corollary can be 
given by using Eq. (39) of Sec. 5. (cf. Ref. 6). 

Next we shall derive an expression for the total num­
ber of times that a tensor operator of rank j can be con­
structed in the group algebraA(S). If one sums Eq. (11) 
over k, one gets 

[see also Eq. (12)]. 

This equation is very useful for practical applications. 
To decide whether an irreducible tensor operator of 
rank j appears in the group algebra one only has to 
check whether 6; XiV) > O. 

Equation (17) can be brought into a different form, 
which has some advantages from a theoretical point of 
view: 

a ()') -" (j) - " (~ "g (j')* (j'») (J) 
1 - L:-' Xi - L:-' g Lf iXi Xi Xi 

• • J 

= 6 ~ 6 X(i')*(R)XU') (R)x(i) (R) 
j' g R 

= 6 {j'jj'} = 6 {j'j'*j}. 
j' j' 

(18) 
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We see from Eq. (18) that the necessary condition of 
Eq. (6) for constructing the tensor operator Tj in the 
group algebra A (S) is sufficient as well. 

Similarly, we can derive expressions for the total num­
ber of times that a tensor operator of rank j can be con­
structed in the group algebra A (g en) (n = 2, 3, ... ). In the 
case of S 0 S, e.g., one has as classes the sets of ele­
ments (R, S), where R is from e k and S from el • We 
shall denote such a class by the symbol (ek , ell. Once 
again the elements of the set (e k' ell can be considered 
as the basis vectors of a permutation representation of 
the group S. The character of the element R of S in 
this representation is equal to 

If R is from e i one has 

(ek,el)(R) =~N.N·I X 2 .,... •• 
gi 

[cf. the derivation of Eq. (12)]. 

(19) 

(20) 

From this it follows that the number of times that a 
tensor operator of rank j can be constructed from the 
class (e k' e I) in A (S 0 S) equals 

("k 1) =~~g. ~j) .(ek,el ) =~~~ ~j)N. N. 
~ J" g i .X. X. g i gi x. .,... .• 1> 

and the total number of times that it can be constructed 
inA(S 0 S) is 

~(j) = _gl ~ 1- x~j) N;kN , I = ~ gg x~j). 
ikl gi i i 

(21) 

We remark that for the six-dimensional irreducible 
representation of the finite group U3 (3), mentioned in 
Sec. 3, the rhs of Eq. (21) is larger than zero, which 
means that a tensor operator corresponding to this 
representation can be constructed in A (S 0 9), although 
as we saw before it cannot be constructed in A (9 ). 

Analogous to Eq. (18) we have 

( .) "" g (j) a 2 J =L.J - Xi 
i gi 

= ~ ~ ~ X (j) (Rh (j') (Rh (j") (R)X (j')*(R)X (j")*(R) 
g R j'j" 

= ~ {j' 0 j"j'* 0 j"*j}. 
i',i" 

In Eq. (22) we introduced a generalization of the 3j 
symbol, {j' 0 j" j'* 0 j"*j}, which gives the number of 
times that the representation (j) is contained in the 
Kronecker product of the representation (j') 0 (j") 
times its complex conjugate representation. 

(22) 

Along the same line one can derive that the number of 
times that a tensor operator of rank j can be constructed 
in A (S en) is equal to 

(23) 

In this equation the symbol J<P) denotes a representa­
tion of the type 

(24) 
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where the V i) are irreducible representations of S. The 
summation in Eq. (23) runs over all representations J<P), 
with n fixed. The symbol {J(n)J(n)*j} gives the number 
of times that the representation (j) is contained in the 
Kronecker product J(n) 0 J<P)*. 

Now we introduce sets of irreducible representations. 
We shall say that an irreducible representation (j) be­
longs to the set Mn if an (j) > O. In the following we shall 
need two lemmas dealing with these sets. 

Lemma A: Let (il) be an irreducible representa­
tion belonging to the set M1 and let (h) be an ir­
reducible representation belonging to the set Mn' If 
(j 3) is an irreducible representation contained in the 
Kronecker product (j 1) 0 (h) then (iJ) belongs to Mn+ l' 

Lemma B: If (j) is an irreducible representation 
belonging to the set M n then (j) belongs also to M n+ 1 and 
so one has Mn ~ Mn+1, n = 1,2,3, .... 

Proof: From the assumption of Lemma A and 
from Eq. (23) it follows that there exists an irreducible 
representation (j) with the property that 

Furthermore, it follows that there exists a repre­
sentation Jfta) with 

(25) 

(26) 

Now we consider the representation J(n+1) = J(n) 0 (j). 
One has 

{J(n) 0 j J(n) * 0 j* iJ} 

= ~ {J(n)J(n)*j,}{jj*j"}{j'j"j3} 
j'j" 

::;, {Jfta)J(n)*j2}{jj*il}{jJ:J3} > 0, (27) 

because of Eqs. (25) and (26) and the assumption that (iJ) 
is contained in (il) 0 ( 2 ). This proves Lemma A. 
Lemma B is an immediate consequence of Lemma A 
[take (il) = (1 1 ) and ( 2 ) = V) in Lemma A]. 

If one takes two irreducible representations (j 1) and 
(h) from M1 and if (j3) is contained in ( 1) 0 (h) then 
(iJ) does not necessarily belong to M 1 in general. How­
ever, from Lemma A it follows that (iJ) does belong to 
M 2' Now we consider all possible Kronecker products 
of irreducible representations from M l' They define a 
subalgebra in the algebra of representations (or a sub­
ring in the ring of characters). This subalgebra may coin­
cide with the whole algebra of representations. From the 
remark made above and from Lemma A it is clear that the ir­
reducible representation belonging to this subalgebra 
are just representations from the union of the sets 
M1 U M2 U'" == M. According to a theorem of Burnside 
(cf. Ref. 18, p. 299) the irreducible representations (J) 
belonging to a subalgebra define a quotient group 9 lJe 
of 9 of which they are the irreducible representations. 
[We might say that 9 Ix is generated by the irreducible 
representations (j) of M 1'] In all representations (j) of 
the subalgebra all elements of X are represented by 
D (j) (E), whereas this is not the case for any (j) not 
belonging to the subalgebra, i.e., for (j)'s with (j) t M. 
Now we know already that all irreducible representa­
tions from M 1 are also irreducible representations of 
gn. Moreover, if (jl) and (j2) are from Ml and if (j3) 
is contained in (jl) 0 (j2) then (iJ) is again an irreduc­
ible representation of 9 73-. From this we have that 
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S /'J; ~ S /~ or that 'J;2. X. We shall prove now that in 
fact Six = S /'J;'or equivalently: 

Theorem: The set of all irreducible representa­
tions of S /3 coincides with M. 

Proof: We saw that g /x b. g I~. Let (j) be an ir­
reducible representation of g, such that (j) is also an ir­
reducible representation of g /~. Then 

X(j)(R) = [j], 'V R E 3. 

One has 

an(j) = y ffi Xi(j) 
( )

n-l 

= L gn-lx(j)(R) + L (K)n-l Xiii) 
RE~ iU gi 

~ gn-l[j]Z _ [j] L (g\ n-l 
iU' \gi) 

~ gn-l[j]Z - (iY-l [j](S - z) 

> 0, 

if n is such that 2n - l > (s - z)/z. 

(28) 

(29) 

In Eq. (29) LiE$~ denotes the summation over all clas­
ses which do not belong to 3 , whereas z is the order of 
'J; and s is the total number of classes of g . 

This shows that an (j) > 0 if n is sufficiently large 
and so (j) E M. Q.E.D. 

Now we come back to our remark in Sec. 3 on the non­
vanishing of the nondiagonal matrix elements (j t 11 Ti 11 j 2)' 
As an example, we consider a tensor Ti from A ~S 0 g). 
Furthermore, we take the irreducible representation 
(jl) 0 (j 2) of the group g 0 g. With respect to this 
representation the tensor operator Ti of Eq. (9) has 
matrix elements of the form 

(30) 

If one reduces the irreducible representation (j') IS (j") 
of S 0 g into irreducible representations of the diagonal 
subgroup S *9, the matrix elements of Tin take the form 

This makes it clear that a necessary condition for 
the nonvanishing of the reduced matrix element 

(31) 

(jIll T i llj2) is, that there exist irreducible representa­
tions (j') and (j") of S with the property that 

(32) 

Because of the Wigner-Eckart theorem one also has 
the condition 

{j2jj 1} > O. (33) 

The conditions (32) and (33) are not sufficient conditions 
for the nonvanishing of (jIll Till j2)' We shall give an 
example of this in the next section. 

5. EXPLICIT CONSTRUCTIONS AND EXAMPLES 

If an explicit (unitary) form of an irreducible re­
presentation (j) of a group S is known one can calculate 
the tensor operators in A (g) by applying the following 
rules. Let (3 k be a fixed class of the finite group g. Let 
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(3 be an arbitrary element of (3 k' Then the components 
of an irreducible tensor operator of rank j formed from 
the elements of (3 k is given by 

Tin = '6 D~~ (G) G-lCG = L: D~t(G) GCG-l, (34) 
GES GEg 

where i is a fixed, but otherwise arbitrary row or column 
index, respectively. 

Equation (34) can be proved by substitution in Eq. (5). 
It can also be proved that by varying i and C this pro­
cedure provides us with all tensor operators of rank j 
in the class (3 k' 

Note that the character projection operators of Refs. 
1 and 4 do not give explicitly the components Tin of a 
tensor operator Ti. Of course, Eq. (34) shall give T?,. = 0 
if the condition formulated in the corollary of Theorem 1 
is not satisfied. 

One can construct more tensor operators by coupling 
known tensor operators by means of Clebsch-Gordan 
coefficients. For this construction one has two possi­
bilities (cf. Refs. 13 and 14): 

(a) The tensor operators operate on the same system, 
which means in our case that both operators are from 
the same algebra A (g) and so is their resultant. 

(b) The tensor operators operate on different systems, 
which means here that the constituting tensor operators 
operate in isomorphic but different algebras A (g) and 
their resultant operators in A (g 0 g). 

The first possibility does not give anything which is 
not already covered by Eq. (34). However, the second 
alternative gives new tensor operators which lie in 
A (g 0 S). This second construction can be iterated to 
get tensor operators in A (S en) (n = 2,3, ... ). 

To illustrate the various procedures for the con­
struction of tensor operators of finite groups we shall 
now give some simple examples. First we consider the 
symmetric group in three variables 53' This ~roup has 
three classes (31 = {E}, (32 = {p, Q}, and (33 = tR, 5, T}. 
The character table is 

11 12 2 

(31 1 1 2 

(32 1 1 -1 
(35) 

(33 1 -1 0 

An irreducible two-dimensional representation can be 
given by the (unitary) matrices 

D(2)(E) = [~ ~l D(2) (P) = [: -:]. 
D(2)(Q) = [ _: :l D(2) (R) = G ~J, 
D(2) (5) =[ c 

-s 
-Sl 
-c 

D (2) (T) = [ c SJ ' S -c 

where c = - t, s = t,f3. (This representation is 
faithful.) 

(36) 

The center of 53 consists of the unit element only and 
hence all tensor operators occur in some algebra 
A (S en). Because in this example a 1 (j) = '6 i Xi (j) > 0 for 
all. (j), every tensor operator occurs in A (S) already. 
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The elements of the classes can be combined to ir­
reducible tensor operators in the following way: 

Class e1 gives 

T~l) = E; (37) 

Class e2 gives 

T~11) = P + Q, (38) 

TY2) = P - Q; (39) 

and class e3 gives 

T~11) =R + S + T, (40) 

T~2) = 2.R - S - T, TP) = J3 (S - T). (41) 

To find Eq. (41) one can use Eq. (34). 

Next we give an example of a tensor operator in 
A (g 0 g) and show that some nondiagonal matrix ele­
ments are nonzero. 

Consider 

(2) 1 
T 1 = 3 (E, 2 R - S - T), T~2) = .!(E, I3s -I3T) (42) 

3 

(the factor 1/3 is for convenience). 

Here, the tensor operators of Eqs. (37) and (41) have 
been coupled. An explicit matrix representation can be 
found by calculating the direct products D (2) (E) 0 D (2) (R), 
D (2) (E) 0 D (2) (S), etc. One finds 

[j 
0 0 

jl D(T~) ~ t~ 
-1 0 

-~l D(T~2» = -1 0 0 0 

0 1 0 0 

0 0 0 -1 

(43) 
The rows and columns are numbered by (mv m 2) = 

(1,1), (1,2), (2,1) and (2,2). 

Next we shall reduce the representation (2) 0 (2) of 
S3 0 S3 into irreducible representations of S3 itself. To 
this end we make use of the following unitary transfor­
mation matrix U, the elements of which are Clebsch­
Gordan coefficients of S3 (see Ref. 22): 

1 
U=-

..f2 
(44) 

The columns in U are numbered as in Eq. (43), where­
as the rows are numbered by (j,m) = (11' 1), (1 2,1), (2, 1) 
and (2,2). By applying U one finds, e.g., 

o 1 

o 0 

o 0 

1 0 

(45) 

We see from this equation that the reduced nondiagon­
al matrix elements (1 1 11 T (2) 112) and (1 211 T (2) 112) are non­
zero. At the same time we observe that the reduced 
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matrix element (211 T (2) 112) vanishes, although Eqs. (32) 
and (33) are satisfied. This can be explained by the 
accidental zero of the 9j symbol 

2 2l 11 2 = 0 
2 2 

[cf. Ref. 13, Eq. (7.1. 5) and Ref. 22]. 
Finally, we shall consider the cyclic group e3 = 

{E, P, Q} with character table 

11 12 13 

e1 = {E} 1 1 1 

e2 = {p} 1 W w 2 

e3 = {Q} 1 w2 w, W = e 2!ri/3. 

(46) 

(47) 

The center of this (Abelian) group coincides with the 
group itself, which means that only the tensor operator 
T(1 1) can be constructed from the elements ofA(C 3

en ), 
n=1,2,3, ... ). 

To obtain the irreducible tensor operators of rank (1 2 ) 

and rank (1 3) we embed C3 in the symmetric group S3 
of the previous example. It is easy to check that the 
following elements of A (S3) transform as the required 
tensor operators of C 3: 

(1 \ 
T 1 2' = R + w2 S + wT, 

T~l~ =R + wS + w2T. (48) 

6. TENSOR OPERATORS AND DUALITY 

As one knows in finite groups many properties of ir­
reducible representations are similar to properties of 
classes. Such properties are called dual properties. 
Recently this kind of duality has been discussed some­
what in the literature (see Refs. 1, 9-11). Although one 
cannot give an exact definition of this duality, it is shown 
in Ref. 10 and 11, that it can be used as a heuristic prin­
ciple to suggest new theorems. 

In this section we shall show, that it is possible to give 
notions and properties dual to the notions and properties 
dealing with irreducible tensor operators constructible 
in the group algebras A(gen) (n = 1,2,3, ... ). To start 
with we show that a 1 (j), the number of times that an ir­
reducible tensor operator of rank j can be constructed 
in A (g), is dual to the number b1 (i) which denotes the 
number of times that a group element A of class e i of 
g can be written as a commutator (cf. Ref. 18, p. 319, 
Ex. 7) or stated otherwise the number of solutions of the 
equation 

XYX-1y-1 =A, (49) 

where X and Y have to be elements of g. It is easy to 
see that this number b1 (i) equals (cf. Ref. 20) 

b 1 (i) =!.. L; L; x~j) X (j) (R SW1 S-1 ) 
g j R,s 

- .! "" "" (j) D (j) (R)D (j) (S)D (j) (R-1)D (j) (S-1) 
- LJ LJ Xi all Il y Y E Ea 

g j R,S 

(50) 
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More generally one can derive that the number of 
times that an element A of a class e i can be written as 
a product of n commutators is equal to 

b (.) = "" (..K) 2n-l ~j) 
n l 'j' [j] X •• (51) 

We observe that the rhs of Eqs. (50) and (51) are dual 
to the rhs of Eqs. (17) and (23), especially if we take into 
account that rg; can be considered as dual to [j] (see 
also Ref. 10). 

We shall present now a table of dual items. In the left 
column items are enumerated concerning tensor opera­
tors and in the right column concerning commutators. 

TABLE I. A listing of dual items. 

Represellialiolls 

Irreducible tensor operators 
of rank j constructible in 
A(sen). 
Number of times a. (j) that 
an irreducible tensor operator 
of rank j can be constructed 
inA(Se n ). 

(
g)n-1 (j) 

an(j) =6 - Xi' 
, gi 

If anD (j) > 0 then a no<1 (j) > O. 

M. = {(j): a.(j) > o}. 

M = U M, defines the quotient 
group' g = S 13 . 

M 1 contains the 'generating 
irreducible representations' 
of g. 
The number of classes with 
only one element equals 
gig (g is the order of ~). 

An example of a group which 
has a representation (j) for 
which a 1 (j) = 0 and a 2(j) > 0 
is the finite group U 3(3) of 
order 6048 (Ref. 19). 

classes 

Elements of class e, 
expressible as the product of n 
commutators. 
Number of times bn (il that an 
element of a class e, can be ex­
pressed as the product of n 
commutators. 

b (i) = 6 K jl • 
( )

2,-1 ( 

n j U] x, 

If bno (i) > 0 then b. o'! (i) > O. 

N. = {e,: b. (i) > o}. 

N = lJ N, defines the (commutator) 
subg~oup S ' . 

N 1 contains the generators of S'· 

The number of irreducible repre­
sentation of dimension one equals 
gig' (g' is the order of S '). 

An example of a group which has 
a class e i for which b1 (i) = 0 and 
b2 (i) > 0 is a group or order 256 
(Ref. 17, p. 39, Ex. 30). 

The properties of tensor operators have been derived 
in the previous sections of this paper. The derivation of 
the properties of commutators are either well known or 
left to the reader. 
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Similarity transformation for the compressible 
Jeffery-Hamel flow of dissipative plasmas * 

H. E. Wilhelm 
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A similarity transformation is presented which transforms the nonlinear, partial differential equations 
describing a compressible plasma flow across an azimuthal magnetic field between plane inclined 
walls (Jeffery-Hamel flow with viscous momentum transfer, Ohmic and viscous heating, and thermal 
heat conduction) into one linear and two nonlinear ordinary, coupled differential equations. By 
elimination, the nonlinear boundary-value problem of this compressible plasma flow is reduced to a 
boundary-value problem for (i) two ordinary, coupled differential equations or (ii) a single functional 
integro-differential equation. The characteristic parameter "m" of the similarity transformation is 
shown to be an eigenvalue of the nonlinear boundary-value problem. 

1. INTRODUCTION 

Nonlinear boundary-value problems can frequently be 
solved exactlyl or quasilinearized2 by means of non­
linear transformations. In incompressible fluid dyna­
mics, a single, exact, nonlinear solution has been obtained 
by Jeffery and Hamel3 for the flow between inclined 
plane walls by means of a similarity transformation. It 
is shown herein that a similarity transformation exists 
also for the general compressible Jeffery-Hamel flow 
of partially ionized gases or plasmas with viscous 
momentum transfer, viscous and Ohmic heating, and heat 
conduction. In the limit of vanishing electrical conduc­
tivity, the similarity transformation reduces to that for 
the compressible flow of a dissipative gas in a diffuser, 
a previously unsolved problem of ordinary gas dynamics. 

The Similarity transformation is of the form F(r, e) = 
r-NG(e) [with different power N and function G(e) for 
different plasma fields]. It transforms the nonlinear 
partial differential equations describing the plasma flow 
into two coupled, ordinary nonlinear differential equa­
tions of second order, in which a single similarity para­
meter N = m occurs. It is demonstrated that the simi­
larity parameter N = m is an eigenvalue of the nonlinear 
boundary-value problem, if the Reynolds (R), Mach (M), 
Eckert (E), Prandtl (P), Hartmann (H), adiabatic (y) 
numbers, and duct angle (eo) are prescribed. In the 
general case, the determination of the eigenvalue m 
requires a (standard) numerical integration of the or­
dinary nonlinear differential equations. 

As an illustration, the theory is applied to isothermal 
flows, which have the eigenvalue m = O. For this case, 
a closed form analytical solution is presented. 

2. THEORETICAL PRINCIPLES 

The plasma flow under consideration is bounded in the 
planes (e = + eo' r 1 :$ r:$ r 2) and (8 = -- 80 , 

r 1 :$ r:$ r 2) by isolating walls, and quasi -unbounded in 
the directions parallel to the z-axis (Fig. 1). The latter 

I'~~~----~------~---- -----------' 

FIG.!: Geometry of the Jeffery-Hamel flow (V) with azimuthal 
magnetic field (B). Net flow rate Q > o. 
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assumption is applicable to a finite diffuser with elec­
trode plates at z = ± zoo' where Zoo» ~ (r1 + r2 )eO' The 
injection (r = r 1 ) and removal (r = r z) of the plasma 
occurs in a self-similar way (Jeffery-Hamel flow).3,4 

The magnetic field has its sources in an electric 
current I flowing through a conducting rod (0:$ r :$ ro' 
-- 00 :$ Z:$ 00, ro < r 1 ). In accordance with Stokes' 
law, .p B' ds = lJ.oI, the magnetic field is azimuthal (fJ.o = 
permeability of vacuum), 

fJ.o I 
B = 217 res, 

In absence of flow sources or sinks at the inclined 
walls, the velocity field is radial, if the accelerating 
force fields are radial, 

v = ue,.. 

(1) 

(2) 

The flow of the plasma (conductivity a) across the mag­
netic field induces an axial current density field (Hall­
effect neglected), 5 

(3) 

The resulting Lorentz force density is a purely radial 
field which opposes the inducting flow, 

Because of V x E = 0, V' i = a(V' E + B' V x v-­
V'V x B) = aV' E = 0, and the boundary conditions at 
z = z±oo' the electric field vanishes: 

E = E"e z = 0, for Ez;z = O. 
±oo 

(4) 

(5) 

The Eqs. (1)-(5) are based on the assumption that the 
induced magnetic field is small compared to the exter­
nal magnetic field, which implies small magnetic Rey­
nolds lUmbers, 5 

RB = fJ.oau(r, e)r « 1, (6) 

The nonlinear partial differential equations describing 
the radial velocity [u = u(r, e)], density [p == p(r, e)], and 
pressure [p = p(r, e)] fields of the steady-state plasma 
flow between the inclined (-- eo :$ e:$ ( 0 ) walls are in 
cylindrical coordinates5 : 

ou op (fJ.o1)2 U 4 0 (1 0 ~ fJ. a 2u pu-- = -- -- -- a - -- + -- IJ. -- -- -- (ur) + -- -, 
or or 217 r2 3 or r or r2 oe2 

(7) 

Copyright © 1973 by the American Institute of PhYSics 1430 
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° = _ ~ op + ~ ~ ~(~ ~ (ru») + 2p. ~ au, (8) 
r 08 3 r 08 r or r2 08 

a pu 
- (pu) + - = 0, (9) 
or r 

1 a ( a 2T 1 aT 1 a 2T ) 
-- (prcvTu) =;\. -- + --+-­
r or 02r2 r or r2 082 

_ JOu +!:) + a(P. 01)2 u2 
_ ~ ..f~ ~ (ru»)2 

\ or r 217 r2 3 ~ or 

+ P. [2(::)2 + (rO:e)2 + 2(~)2 J. (10) 

where 

p = p(J{T. (11) 

The transport coefficients are regarded as constant; 
p. is the viscosity,;\, the heat conductivity, c v the specific 
heat at constant volume, and (J{ the ideal gas constant. 

3. SIMILARITY TRANSFORMATION 

The Eqs. (7)-(11) are brought into nondimensional 
form by means of the substitutions 

r y-'> r, 
o 

where 

...e... -'> P 
Po ' 

Po = p(ro, 6) > 0, 

Po = p(ro• e) > 0, 

U 
--'> U 
U ' o 

Uo = u(ro, 6) > 0, 

To = T(ro, 6) > 0, 

T r-" T, 
o 

are known reference values of the flow fields, e.g., 

Po = p(r1, 0), U o = u(r1, 0), 

(12) 

(13) 

Po = p(r ll 0), To = T(r1,0) 

is a suitable choice for applications, since the fields at 
r = r 1 of the central streamline 6 = ° are most likely 
to be measured in experiments. 

By means of the similarity ansatz (following from 
group theoretical considerations) for the dimensionless 
plasma fields, 

u(r, e) = r-mg(e), 

p(r, e) = r-fJh(e), 

p(r, e) = r m-1j(e)/g(8), 

T(r, 8) =r-m"1l+1cp(e), 

where [n = m + 1 by Eqs. (7), (8), (10)] 

cp(e) = g(e)h(8) n = m + 1, 
j(8) , 

(14) 

(15) 

(16) 

(17) 

(18) 

the nondimensional partial differential equations corres­
ponding to Eqs. (7)-(10) are reduced to the ordinary 
differential equations (' = d/ d8): 

[
4 R 

g" - 3 (1- m2) + f12]g + (m + 1)-h = - mRjg, (19) 
yM2 

7 -m yM2 
h'=----g' 

3 R ' 
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.-!.. (cp" + 4m2cp) = - [2(1 + m 2) - i(1- m)2 + H2]g2 
PE 

- (g')2 - ;- e; -1 ~2m )gh, (21) 

where 

and 

R = Pouoro/Il = Reynolds number, 

M = uol(YPo/Po)1/2 = Mach number, 

E =u~/cpTo = Eckert number, 

P = /1C pi;\. = Prandtl number, 

H = (a/ p.)1/2(p.ol/217) = Hartmann number, 

y = epic v = ratio of specific heats, 

g(6) = 1, h (8) = 1, j (8) = 1, cp (8) = 1. (22) 

[Equation (22) has to be replaced by other relations if 
reference values different from those in Eq. (13) are 
chosen for the nondimensionalization.] 

The similarity transformation in Eqs. (14)-(17) se­
parates the dependence of the plasma fields on the ra­
dial (r) and azimuthal (e) coordinates, and reduces the 
partial differential equations [Eqs. (7)- (10)] into ordinary 
ones [Eqs. (19)-(21)]. The pressure h(8) and velocity 
g(e) amplitudes are interrelated by the linear Eq. (20) 
which is readily integrated: 

7-m M2 
h =-3-YRg + Co, 

where 

7-m M2 
Co = 1--3-YR 

(23) 

(24) 

by Eq. (22). The integration constant Co determines the 
pressure at the walls e = ± eo. It is Co 2:: ° for p(r, e = 
± ( 0 ) 2:: 0, since g(8 = ± eo) = 0. By Eqs. (23)- (24), 

7-m M2 
h = 1 + -3- Y R(g-I). (25) 

4. BOUNDARY-VALUE PROBLEM 

The plasma flow has boundaries in the planes r = r 1 
and r = r 2 (- eo ~ e ~ ( 0 ) and e = ± 80 (r1 ~ r ~ r 2). 
The boundary conditions at r = r 1 and r = r 2 are auto­
matically satisfied for a self-similar injection (r = r 1) 
and removal (r = r 2 ) of the material and thermal flow. 3,4 

The velocity v(r, e) vanishes at the side walls e = ± eo 
(r1 ~ r ~ r 2). The temperature T(r, e) can be subject to 
various boundary conditions, e.g., those for thermally 
insulated side walls. Accordingly, the boundary conditions 
for the velocity and temperature fields are 

ru(r, 8)]e=±eo = 0, [oT(r, 8)/08]e=±e
o 

= 0, r 1 ~ r ~ r 2. 

Upon elimination of h(8) from Eqs. (19) and (21) by 
means of Eq. (25), one arrives at the following nonlinear 
boundary-value problem for the coupled fields g(e) 2:: ° 
and cp(8) > ° [T(r, 8) > 0]: 

g" + [(1 + m)2 _ H2]g + mR(1 + 7 - m yM2 (g _ 1»)g2 
3 R cf> 

+ (1 + m)(~ - 7 - m) = ° (26) 
yM2 3 ' 
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1jJ" + (2m)21jJ = - PEfJ(g,g'), 

fJ(g,g') = (1- 7-myM2)!i(2m_l-m\u 
3 RyE M2 r 

+[~(1 +m +m2) +H2 

+ 7-m M2(2m_l-m)] 2 + ( ')2 
3 E M2 g g, 

where 

r g(9)]e=±eo = 0, 

[oljJ(9)/o9]e=±% = O. 

(27) 

(28) 

(29) 

The boundary-value problem defined in Eqs. (26)-(29) 
can be formulated as well for other boundary conditions 
of the temperature field, e.g., 

[1jJ(9)]e=±eo = 1jJ±, 1jJ± > 0, 

if the temperature is prescribed at the side walls, 
T(r,9 = ± ( 0 ) = 1jJ±r-2m [Eq. (17)]. 

5. FUNCTIONAL INTEGRO·DIFFERENTIAL 
EOUATION 

(29') 

The Eqs. (26)- (27) permit a more condensed repre­
sentation. Formal integration of Eq. (27) gives 1jJ(9) as 
a functional of g(9),g'(9), and 9: 

ljJ[g(9),g'(9),9] = C 1 cos2m9 + C 2 sin2m9 

+ f!' t fJ[g(9'),g'(9')] sin 2m (9' - 9)d9'. (30) 

The constants C 1 and C 2 are determined by the re­
spective boundary conditions for the temperature field. 
As an example,C 1 and C 2 are given for the boundary 
conditions in Eq. (29): 

1 ctg2m90 J+eo C1 = - -2 PE 2 fJ[g(9),g'(9)] cos2m9d8 m -eo 

1 PEle -"2 2m 0 {fJ[g(9),g'(9)] 
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exclusively in asymmetrical solutions,g(+ 9) ;o! g(- 9). 

Substitution of Eq. (30) into Eq. (26) leads to the non­
linear, functional integro-differential equation: 

gil + [(1 + m)2 - H2]g 

+ mR(1 + 7 -; m y~2(g_ 1»)g21jJ-l[g(8),g'(9), 8] 

+ (1 + m)(---.!i.... _ 7 - m) = O. (33) 
yM2 3 

The boundary conditions for Eq. (33) have already been 
stated in Eq. (28). 

6. SIMILARITY PARAMETER 

In the formulation of the boundary-value problem, 
Eqs. (26)-(29) [Eq. (29')], the constants R,M,E,P,H,y, 90 
are given, whereas the similarity parameter, m, is not 
known a priori. In accordance with the theory of boun­
dary-value problems,7 the Eqs. (26)-(29) [Eq. (29')] 
have only solutions for certain characteristic values 
of m, the so-called eigenvalues of m. Since the pressure 
is necessarily positive, h(8) > 0, and g(9 = ± ( 0 ) = 0, 
Eq. (25) gives 1 - (7 - m)yM2/3R > O. Hence, m satis­
fies, for physical reasons, the inequality 

m > 7 - 3R/yM2. (34) 

Since powers 1m I »> 1 are physically not meaningful 
[Eq. (14)] and IR/yM2 I »> 1 in actual flows, it follows 
that the similarity transformation describes pure out­
flows: 

g(e) 2? 0, R > O. (35) 

In the general case, the eigenvalue m has to be deter­
mined by numerical integration. To obtain an analytical 
estimate of m, Eq. (10) can be replaced by the polytropiC 
energy integral, p/Po = (p/ Pols (;3 = polytropiC coeffi­
cient). This approximation gives for the order of mag­
nitude of the similarity parameter8 

m ~ (fj - 1)/«(3 + 1), i.e., - 1 S m S + 1. 

7. APPLICATION TO ISOTHERMAL FLOWS 

For isothermal flOWS, p/ Po = p/ Po, the eigenvalue is 
m == O. In this special case, the boundary-value problem 

+ fJ[g(- 9),g'(- 9)]} sin2m9d9 (31) in Eqs. (26)-(29) becomes linear: 

and 

1 tg2m9 0 +eo 
C2 = + -2 PE 2 J fJ[g(8),g'(9)] sin2m9d8 m -fio 

1 PE eo 
+ "2 2m 10 {fJ[g(9), g' (9)] 

- fJ[g(- 9),g'(- 9)]} cos2m9d9. 

Hence, e.g., 

C1 ;e 0 and C 2 = 0, for g(+ 8) = g(- 8), 

by Eq. (27). Certainly, symmetrical solutions exist, 6 

g(+ 9) = g(- 8), due to the symmetry of the boundary 
conditions in Eqs. (28)-(29). On the other hand, if 
IjJ + ;e IjJ _, the boundary conditions in Eq. (29)' result 
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gil + (I-H2)g +(~-'!..) = 0 
M2 3 

(36) 

where 

(37) 

Hence 

) ( 
1 - cosh(H2 - 1) 1/28 ) (0) 

g(8 = 1- g 
1 - cosh(H2 - 1)1 /2 90 

(38) 

and 

M2 = R/ _ + 0 g(O) • (
7 (H2 - 1) cosh(H2 - 1) 1/2 8 ) 

3 cosh(H2 - 1)1/2 90 - 1 
(39) 

g(O) is given by the normalization, e.g.,g(O) = 1 for e = 0 
by Eqs. (13). 
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The boundary conditions in Eq. (28) interlates R,M,H, 
and 90 as shown in Eq. (39). Accordingly, if R,H, and 90 
are prescribed, isothermal flows (m = 0) exist only for 
Mach numbers M satisfying Eq. (39). It is seen that 
isothermal flows with standard Mach numbers, M ~ 1, 
are possible for Hartmann numbers H2 ~ R » 1 as 
common in experiments. On the other hand, in absence 
of magnetic fields (H = 0), isothermal flows with 
reasonable Mach numbers, M < 10, occur only at small 
duct angles, 90 « 1, since R» 1. 

In Eqs. (38)-(39), it should be noted that cosh(H2 -
1)1/2(} = cos(1- H2)1 /2 9. The Eqs. (38) and (39) become 
forH2 = 1 

g(9) = [1 - (9/9 0 )2]g(0) (40) 

and 
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M2 = R[(7/3) + (2/9~)g(0)]-1 «R, 90 « 1. (41) 

*Supported in part by the U. S. Office of Naval Research. 
IE. W. Montroll in Lectures in Theoretical Physics, edited by A. O. 

Barut and W. E. Britton (Gordon and Breach, New York, 1968). 
2H. E. Wilhelm, J. Math. Phys. 13,252 (1972). 
3G. B. Jeffery, Philos. Mag. 27,455 (1915). 
4K. Millsaps and K. Pohlhausen, J. Aeron. Sci. 20, 187 (1953); J. 

Nikuradse, Z. Angew. Math. Mech. 8, 424 (1928). 
5L. E. Kalikhman, Magnetogasdynamics (Saunders, Philadelphia, PA, 

1967). 
6In spite of the symmetry of the boundary conditions, also 

asymmetrical solutions exist for the incompressible Jeffery-Hamel 
flow. 3-4 

7 A. Sommerfeld, Partial Differential Equations in Physics (Academic, 
New York, 1949). 

SIn the polytropic case, the similarity transformation exists by Eq. (8) 
only ifm = ({3 - 1)/({3 + I). 
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It is shown that for empty Petrov-type N spaces the Lie derivative in the principal null direction of 
the Weyl conformal tensor and its dual is equal to a conformal transforniation and a duality rotation 
of the original tensor. This type of symmetry is studied for general relativity and electromagnetism. 

1. INTRODUCTION 

In this paper the Lie derivatives of the Weyl con­
formal tensor and the Maxwell electro-magnetic tensor 
are examined for principal null directions of these 
tensors.! For the case of empty Petrov-type N spaces, 
it is proven that 

f C pallil =A[C pallll cosB + *C pallil sinB], 

f *Cpalll) =A[*Cpalll) cosB - CpaI'll sinB], 

(1) 

(2) 

where Cpal'II~1) = 0, *Cpalll) is the dual of the Weyl ten­
sor Cpa ~ I)' and A and B are given by directional deriva­
Uves of ~ I). A similar result also holds for the source 
free null Maxwell tensor, and its dual. When equations 
of the form (1) or (2) hold, this will be called a null­
type symmetry. 

Properties of these equations are examined, and they 
are shown to be invariant under conformal changes of 
the metric. The Lie derivatives of the nonnull Maxwell 
tensor are examined in some detail. 

2. THE NULL MAXWELL CASE 

Before establishing Eqs. (1) and (2) it is interesting to 
look at the corresponding situation for the null MaxWell 
field. It is well known that F exS represents a null field 
if and only if its Lorentz invariants E 0 B and E2 - B2 
are everywhere zero. Plane waves are, of course,of 
this type. For simple Maxwellian plane waves, the com­
plex tensor 

F1s == F exS + i*F exS takes on the form 

F1s = C(kllxI')l[exmsl' 

where lex is a real constant null vector giving the direc­
tion of propagation of the wave, and m ex is a complex 
constant null vector normal to lex.lex is the principal null 
vector of F exS' 

The Lie derivative of F1s in the ~ a direction is given 
by 

(3) 

For ~a = ~la, F exa~~s = F aB~~ex = O,and thus 

t (~C .a la
) t f F exS = --C- F exS' 

~C la __ .a _ _ Ae-ie C - • (4) 

Equation (4) is equivalent to the Maxwell analog of 
equations (1) and (2) both holding. In terms of the E and 
B fields (4) just says that when E and B are Lie trans­
ported along the principal null direction they only change 
by having their amplitude multiplied by a common factor 
A, and being rotated through an angle B. This is all that 
could be expected for a plane wave since B oE and B2 -
E 2 must stay zero and B and E normal to the spacial 
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propagation direction so that Eq. (4) uses up their com­
plete freedom to change. 

For the generic type N field satisfying Maxwell's 
source free equations,F1s can be put in the form2 

F1s = Bl[exmSl, 

where 

lex:s lS =mex:slS = 0, mal?ex = alex + bmex' 

It follows from the above that for ~ a = Ha 

t F1s = ~[(B .a la/ B ) + bJ F1~. (5) 

H FaS and *FaS are studied instead, an equation of 
the form of (5) would be obtained. On the other hand, if 

£ Fts 
t ex 

is examined an equation of the form of (5) will not al­
ways hold. 

3. THE NONNULL MAXWELL CASE4 

For the remainder of this paper it will be more con­
venient to work in spinors.2 Then in the standard way 

F as ..... € AB4i A' B' + € A' B'~ AB' 

€A'B'~ AB ..... F1s' 

For the nonnull Maxwell case ~ AB can be put in the 
form 

where its principal null directions are given by LA and 
• A -1 A 

0B' A change In LA ~ ALA = LA forces ° A ~ A ° A = 0 A 
so that ~ is not changed. ~ in fact gives the two Lor­
entz scalars F exSFexS = 2(B2 - E2), and F as *FexS = 
4E oB. H S is defined by 

S == ~ AB~AB = - 2~2, 

then 

Re S = tF aSFexS, 

1m S = tF exs*FaS. 

(6) 

Thus if ~ is real,B oE = ° andB2 - E2 < O,and if ~ is 
pure imaginary,BoE = ° and B2 - E2 > 0. 

The condition for Fill) to allow a null-type symmetry 
is for f F 1'1) expressed as a spinor to be of the form 

(7) 

where n is on arbitrary complex scalar field. £ F uV' VV' 
t 

is a formal symbol for the spinor representation of the 
tensor f F 1'1)' 
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Introducing a spin dyad (LA, oA), J~ = oA, Jt = LA in 
the standard Newman-Penrose way,S and taking ~AA' = 
LAC A', Eq. (7) becomes in components 

4>[- 2T + (3 + a -1f - o(lnA + InA)] 
+ i[{3 + a + 1f - o(lnA + InA)] = 0, (8) 

AA[~(lnA + InA) + Y + y][4> + i] - ~[4> + i] 
= - [n4> + nil, (9) 

(AA)(J.L + jI)(4) - i) + ~(4) - i) = - [- n4> + nil, (10) 

(4) +~)II=O. (11) 

The terms in A and A enter by taking 4> AB = 24>S" (iB)' 
fAA' = tAt-A' which is physically equivalent to the origin­
al choice. The condition II = ° says that LA is a tangent 
vector field to a geodesic congruence. 

For *F jJv the equations analogous to Eqs.~)-(l1) are 
obtained by replacing 4> by - 4>, and leaving 4> unchanged. 
If both *F jJ v and F jJ v admit a null-type symmetry then 
the set of equations obtained are 

(3 + a + 1f- o(lnA + InA) = 0, 

T = -1f, 

II = 0, 

~(lnA + InA) + y + Y = - (J.L + p:). 

(12) 

(13) 

(14) 

(15) 

These equations unlike the null case, can only be 
satisfied by one value of A. In flat space there are a 
large number of trivial solutions to these equations. The 
most trivial is that of an everywhere constant electric 
field. For this case any constant null ~ 0. will do. For 
the Coulomb solution the principal null vectors (in a 
coordinate system where the change is at rest) are 
given by ljJ = [(x2 +y2 +z2)1/2,x,y,z]andnjJ = [-(X2 
+ y2 + z2)1/2,x,y,Z)], and it is easy to see £IF jJ v = F jJ v' 

Similar equations hold for njJ and *F jJ v' and thus it has a 
null-type symmetry in both its principal null directions. 

If FjJv and *FjJv are studied the conditions for a null­
type symmetry are not the same as those of F/! v and 
*F II v separately, but if the symmetry is to hold for FjJ v 

and *FjJv the same equations (12)-(15) are obtained. 

4. THE GENERIC WEYL TENSOR CASE 
The Lie derivative of the Weyl conformal tensor ex­

pressed in a spinor representation is given by defining 
E RR'SS' UU'VV' as 

ERR' SS' UU'vv' = ~ AA'[E RS E uv+ R'S' U'V');AA' 

then 

+ [E RSE: UAW R' S' U' A]~;t.-t' + [E RSE: AV+ R' S' A' V' ]~;t.-t, 
+ [ERAE:UV+R'A'U'v'l~11', + [EASE:UV+A'S'U'v,l~~" 

ERR,SS'UU'VV' + ERR,SS'UU'VV' = £ CRR,SS'uu'vv" (16) t 

where 

CRR,SS'uu'vv' = E:RSE:UV~R'S'U'V' + E:R'S,EU'V'+RSUV' (17) 

*C RR' S S' Uu' VV' is obtained from C RR' S S' uU' VV' by 
replacing ~ R' S' U' V' by i~ R' S' U' V' and W R S uv by -iw RS UV' 

£ t *C RR' S S' UU' Vv' is then given by 

£ *C RR'SS' UU' VV' = iE RR'SS'UU'VV' - iE RR'SS'UU'VV" 
t (18) 
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Equations (1) and (2) can be written in spinor form as 

E RR'SS'UU'VV' + E RR'SS ' UU'VV' = E:RSEuvn'i R'S'U'V' 

+ E:R'S,E:U'V,nWRSUV' (19) 

E RR'SS'UU'VV' - E RR'SS'UU'VV' = ERSEuvn+R'S'I'V' 

- ER'S,Eu'v,nwRSUV' (20) 

where n = Aeie . Equations (19) and (20) together give 
the single spinor equation 

E RR'SS' UU'VV' = nE:RSE:UVwR,s' U'V" (21) 

Since £ t C RR' S S' UU' VV' has the same symmetries as 
the Riemann tensor it can be written in the form 2 

£ C RR'SS' UU'VV' == B RR' SS' UU'Vv' = ER'S,EU'V,B(RSUV) t 

+ E:RSEUVB(R'S'U'V') + ~(ERvtSU + ERuEsv) 

X EA'B,Eu'v,B + HER'v,ES'U' + ER'U,ES'V,)E:RSEuvB 

+ EuvtR'S,DRSU'v' + E:RSEU'v,DuVR'S" (22) 

B IB P' Q' 
ABCD ="4 AP'B CQ'D , 

B =B AB AB =B, 

Equation (1) holding for a given Weyl tensor is thus 
equivalent to 

B = 0, 

DRSU'V' = 0, 

where a R,{3S'YU'OV' are the principal null directions of 
Cpo jJ v' That is B pOll v has the same algebraic structure 
and prinCipal null directions as C P OjJ v' and differs from 
it only in the complex factor (2. 

The proof of the invariance of Eqs. (1) and (2) under 
~he transformations g jJ J( ~ ag jJ v g jJ J!.. follow from 
C pojJv = nCpojJv,and *C oojJv = n*c pojJv along with the 
nonmetric dependence of the £ t operator. Thus 

f CRR,SS'uu'vv' = (ta)CRR,SS'uu'vv' + at CRR'SS'uu'vv' 

= {[(£t a) + nal/a}[ER'S'Eu'v'~RSUvl 
+ {[(££ a) + na]/a}[E:RsEuv~R'S'U'V']. (23) 

The proof for (2) is essentially the same. 

Equations (1) and (2) immediately admit an integra­
bility condition. As gpvC pojJv = gpv*C pojJv = O,it fol­
lows from these and Eq. (1) that 

From Eq. (2) it follows that 

If both equations hold, then the process can be con­
tinued indefinitely to get the set of equations 

(24) 
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iPIJCpa~IJ = 0, 

iPIJ = £t hPIJ = £~ gPIJ, 

iPIJ*Cpa~IJ = 0, 

jPIJCpa~IJ = 0, 

£t iPIJ =jPIJ, 

}'PIJ*C :::: 0 
• pa~IJ • 

(25) 

Also if Eq. (1) or (2) holds with n real a set of equa­
tions of the form of (25) just involving Cpa~IJ or *C pallIJ 
alone must hold. 

These integrability conditions are trivial in the case 
where ~ IX is a conformal motion 

(f gpIJ = ~gPIJ)' 
In all cases it is only the trace-free parts of hP IJ, (.P IJ, 

etc. that enter into the integrability conditions. 

5. THE NULL WEYL CASE 

For C pallIJ of typeN, 

and ~ AA' is taken to be of the form 

~AA' :::: ~oAo-A'. 

The easiest way to establish (1) and (2) is to use the 
spin dyad method. Expanding Eq. (19) in dyad components 
gives the independent set of equations 

~(4E - 2p) = n, 
K:::: 0, 

(] + (1= O. 

(26a) 

(26b) 

(26c) 

All other components are identically zero, or just the 
complex conjugate or negative of one of these equations. 
Notice that the set of equations (26) can be satisfied for 
any value of ~. This is unlike the case of a conformal 
motion, where two different conformal Killing vectors 
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cannot have the same streamlines. 6 For ~ IX to generate 
a conformal motion it is necessary that n be real, since 
then Eq. (1) is an integrability condition of the confor­
mal Killing equation. 

From the Goldberg-Sachs theorem,s or directly from 
the vacuum Bianchi identities, K and (] must be zero for 
Ricci-flat spaces. K = 0 is the condition that the princi­
pal null vector field is tangent to a geodesic congruence, 
and (] = 0 the condition that the congruence is shear free. 
The real part of p measures the expansion of the congru­
ence' while its imaginary part gives its twist. When E is 
nonzero the tangent vectors oA are generated by a non­
affine paramaterization of the geodesics. Since Eq. (26a) 
can be always satisfied Eq. (1) has now been shown to 
hold for all conformally Ricci -flat-type N spaces. The 
same method will work for the case of the dual tensor, 
*C pailIJ ' 

If the Lie derivative of cpa ~ v with respect to a prin­
cipal null direction is examined equations of the same 
form are obtained, and the same type of theorem can be 
proved. In fact all of this paper could have been done 
for the Maxwell and Weyl tensors with all indices up. On 
the other hand, if mixed index tensors are studied (F~ 
or Cg~IJ),equations of the type of (5) or (1) will not in 
general be true. This presents a difficult problem in 
interpretating these results. 
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The kinetic theory of a model previously studied by Jepsen and others is reformulated in terms of 
the theory of the grand partition function and the hierachy of equations satisfied by the distribution 
functions derived therefrom. It is shown that the principle of molecular chaos implies an exact 
factorization of the two- and many-body distribution functions, which allows the equations of the 
hierachy to be solved exactly, with the recovery of results obtained by other methods. The methods 
of the present paper also allow examination of the origin of the divergences generated by well-known 
approximations, and suggest alternative approximations in which such divergences do not appear. 

INTRODUCTION 

The development of the theory of transport proper­
ties of dense gases has met with certain difficulties. 
The usual method of .obtaining approximations to the 
correct formulation of the principle of molecular chaos 
is to consider the dynamics of small numbers of tem­
porarily isolated particles in the fluid environment. One 
then obtains the generalization of Boltzmann's equation 
due to Bogoliubovl and Green2 in one approximation and 
the Choh- Uhlenbeck equation3 in another. However, 
higher order approximations lead to divergences in the 
density expansion of transport coefficients. 

A further major problem is that inconsistencies 
arise when Boltzmann's equation is applied to a system 
where bound states can occur. Attempts have been 
made by Green and Hoffman4 to rectify this problem. 

The purpose of the present paper is to examine the 
divergences associated with the exactly soluble model 
of a system of one-dimensional hard rods. This model 
has previously been discussed by Jepsen5 and Lebowitz 
and Percus. 6 We show here that it is possible to give 
an exact formulation of the principle of molecular 
chaos which leads to the known exact value of the self­
diffusion coefficient. However, if the usual series of 
approximations to the prinCiple of molecular chaos is 
made, it is found that the first approximation gives the 
exact result but that the Choh- Uhlenbeck term is not 
even zero but divergent. The observation that the exact 
result is obtained by just considering the first approxi­
mation has been made by Blum and Lebowitz 7 who 
however, conjectured that higher order term~ would be 
zero. 

In more complicated systems the principle of mole­
cular chaos cannot be stated so simply, and the prob­
lem is to find a series of successive approximations 
which will give convergent results at each stage. We 
consider a simple generalization of the hard sphere 
model and indicate how the Choh- Uhlenbeck term may 
be modified to give finite results. While this is a far 
from general treatment of the divergence difficulties for 
two- and three-dimensional models with more general 
forces it may give some indication of the sources of the 
difficulties and how it may be remedied. 

In Sec. 1 we derive the appropriate kinetic equations 
for a one-dimensional system of hard rods of arbitrary 
thickness. 

In Sec. 2 we give the exact formulation of the prin­
ciple of molecular chaos and solve the closed set of 
equations which result from its use. 
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In Sec. 3 it is shown that the Choh-Uhlenbeck approxi­
mation to the exact formulation of molecular chaos is 
divergent even though the lowest order term gives the 
exact result. Finally a one-dimensional model in which 
there is a nonzero probability of penetration of par­
ticles on colliSion is conSidered. It is possible to de­
velop a series of approximations which are convergent 
at each stage. 

1. THE DISTRIBUTION FUNCTIONS AND THEIR 
HIERARCHICAL EQUATIONS 

In this section we wish to examine the behavior in 
time of a labelled "test" particle in a one-dimensional 
system and also to study the response of the back­
ground particles. We assume that the test particle has 
a specified initial position and velocity and that the par­
ticles which make up the background initially have an 
equilibrium distribution. The ensemble which we con­
sider consists of subensembles of systems which have 
M particles to the left and N particles to the right of 
the test particles, where M and N range from 0 to 1Xi. 

The particles in any given system can be labelled 
according to their initial position relative to the test 
particle (which is taken to be particle zero). In the 
subensemble with M particles to the left and N particles 
to the right of the test particle, the distribution of par­
ticles is given by the distribution function F M ,N, which 
obeys the M + N + 1 particle Liouville equation 

( l.. + KM'N)FM'N = 0 
at ' 

where KM ,N is the Liouville operator for the system. 
The ensemble average (G) of any property G is then 
given by 

(1) 

g-M < ... <gN' (2) 

where Xi (t) = gi(t), vi(t) denotes the position and velo­
city of particle i at time t and X· = g., v. denotes the 
initial position and velocity of p~rtic'le i. Since the inte­
gral limits in (2) are expressed in terms of the initial 
particle distribution, it is somewhat more convenient 
to compute (G) from the initial distribution as follows: 

(G) = io N~O CHM dXi)FQM,N GtM,N, 
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Here Ff·N is the initial distribution which is given by 

where X' == g', v' specifies the initial position and velo­
city of the test particles, {3 == l/kT is the statistical 
temperature, J.l is the chemical potential, and H M.N is 
the (M + N + I)-particle Hamiltonian. The quantity 
EL is the equilibrium grand ensemble partition function 
for the particles to the left of the test particle and E R 

is similarly defined for the particles to the right. 
Finally, 

GtM.N == GM.N (X-M (t), ••• , XN(t». 

The probability that the jth particle is in the phase 
volume dXa about the phase point Xa == ga' va is 
~o.)(xa' t) dXa' where 

~(l)(Xa' t) == {6 (Xa - Xj (tn>. (5) 

The function!?-)(as well as the other distribution 
functions which we later introduce), of course, also de­
pends on X' == g', v', the initial position and velocity of 
the test particle. The pair distribution function corres­
ponding to the jth particle being at Xa and the kth par­
ticle at Xa is given by 

(6) 

A closely related quantity iS~(2)(Xa' Xa' t) which gives 
the probability that particle j is at Xa and any other 
particle is at Xa' It is defined 

(2) ( )" (2) ( ) ~ Xa' XB ,t == D. ~.k Xa' Xa ' t . (7) 
k "'J 

By obvious extension of these definitions, a whole 
family of distribution functions can be defined which 
serve to completely define the state of the ensemble at 
any time. These functions obey a hierarchy of coupled 
equations which are very Similar to the BBGKY equa­
tions. For instance, from (3), (5) and the fact that 
(a/at) 6<Xa - Xj (t)) == KM.N 6(Xa - X.;u» it is easy to 
show that 

(a a) (1) 
at + Va aga ~ (Xa' t) 

1 J acf>a.a a (2) 
== - dXa -- - fj (Xa' Xa' t), 

m aga aVa 
(8) 

where m is the particle mass, and cf>a.a == cf>{ga - ga) is 
the interaction potential betwe~B a particle at ga and one 
at ga' Similarly we find thatfj'; obeys the equation 

(

a a a 1 acf>a.a a 1 acf>a.{3 a) 
at + va oga + V{3 aga - m aga aVa - m aga aVa 

X fj~~) (Xa' Xa' t) 

J (
acf>a.r 0 ocf>{3.r a) (3) 

== dXr -a- -a - + -a- a .4.k (Xa' Xa' Xr' t) 
ga Va ga Va (9) 

and that the other distribution functions obey coupled 
equations of this kind. 

We now consider the speCific case of a gas of im­
penetrable pOints (i.e., rods of zero length) which are 
initially constrained to lie in a box of length 2L with 
the test particle at the origin of the box center (i.e., 
g' == 0). Those particles to the right of the origin, as 
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well as the ones to the left, are initially uniformly dis­
tributed with a Maxwellian velocity distribution. Al­
though the initial total particle denSity is uniform 
(except for the particle at the origin), the distribution 
of labelled particles is, of course, a function both of 
pOSition and particle label. 

The initial distribution is found from (3), (4), and (5) 
to be 

for j == 0 f O(l)(Xa,O) == 6(ga)(va - v'), 

for j > 0 
(1) p(pga)j-1 

~ (Xa' 0) == (j _ I)! exp(-pga)ho(va ), 

== 0, otherwise, 
(10) 

for j < 0 fj(l) (Xa, 0) ==f-?)(- ga' va' 0), 

where p is the initial particle density and ho(v) == (m{3/ 
2rr)1/2 exp(- t{3mv2 ). The restraining walls are remov­
ed at time t == 0, and the system is allowed to evolve in 
time without external constraint. 

Before proceeding we wish to show that the distribu­
tion functions for the more general case where the rods 
are of length a '" 0 are trivially related to those for the 
a == 0 case. For convenience in examining this question, 
we use a canonical ensemble of systems with N par­
ticles to the right and N particles to the left of the test 
particles. In the thermodynamic limit the choice of 
ensembles is, of course, immaterial. The independent 
intensive thermodynamic variables for the ensemble in 
its initial state are the temperature and the density, 
p == N/L. We now define a new set of initial pOSition 
coordinates by 

!Ij == !Ij - ja, j == - N to N. 

Clearly gj - ~ is the "unoccupied" distance between 
the jth particle and the ith particle. From a study of 
the dynamiCS of the system of rods, it is apparent that 
~(t) == l5j(t) - ja is identical to the position of the jth 
particle at time t in a system of rods of zero length 
which were initially in the state g;, Vi' i == - N to N. 
Also, taking into account the impenetrability of the rods 
(which does not allow the centers of neighboring rods to 
approach closer than within a distance a of one another), 
the integration limits of (3) can be written 

;. g-N ;. - L + Na. 

Taking these pOints into account, we see that the sys­
tem of rods of length a '" 0 is essentially equivalent to 
a system of impenetrable points in a box of length 
2(L - Na). Thus 

F (1) ( I) (1) ( . I /( » Jj ga,va,t a,p ==fj ga-}a,va,t O,p 1-pa , 

where we have indicated the explicit dependence Offj(l) 
on the length of the rods and the initial denSity. Simi­
larly 

fj~~)(ga, va' ga ,va' t I a, p) == fj .~2)(ga - ja, va> ga - ka, 

va' tIO,p/(l- pa» 

and the other distribution functions for a '" 0 can be 
related to their a == 0 counterparts by obvious exten­
sion. 
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For the case of impenetrable point particles, (8) can 
be written in a somewhat more convenient form. We 
can obtain from (9) an equation for fi(2) of the form 

~ a 1 a CPa.S a 1 a CPa.S a ) 
\(Va - Vs) o(ga - gS) - m oga oVa - mags OVs 

X 1.i(2) (Xa' XS' t) = other terms. (11) 

Now for the interaction which we are considering it 
is seen that the integration range of gs in (8) can be 
limited to an arbitrarily smail line segment containing 
grx and, in the limit that this range became vanishingly 
smail, only o-function terms in the integrand contribute 
to the integral. The o-function terms in the1.i(2) equa­
tion are explicitly displayed in (11). Substitution of 
(11) into (8) then leads rigorously to the equation 

(12) 

where ltx = ga + ESgn (vs - va) and ~ = g - Esgn (vs -
vrx )' The variables grx' vrx,g~, Vs are postcollision vari­
ables whereas ga' Va,lTa, vB are precollision variables. 
But from (11) 

limo fi(2) (ga' va' g~, VB' t) = lim f}·(2) (ITa, vS,ga' Va' t), 
E-+ €-i>O 

(13) 
where we have again made use of the fact that the 
"other terms" of (11) can be ignored in the E ~ 0 limit 
[which reduces (11) to a Liouville equation in the pair 
space]. We have also made use of the fact that, for this 
system, two particles simply exchange velocities upon 
collision. Combining (12) and (13) yields 

(~ + va _O_)fi(l) (Xa' t) = lim J dvs Ivs - val 
at ago .... 0 

x [fi(2) (ITa, vs,ga' Va' t) -fi(2)(ga' va,g;;" VB' t)]. (14) 

We can now make use of the fact that the particles 
are impenetrable [and hence the jth particle is always 
next to the (j + 1)th and (j -1)th particles] to write 

where 

(j) = j + sgn (vs - va)' 

Equation (14) can then be written in the form 

(~ + va ~)fi(1)(xa, t) = lim J dvs Ivs - va I 
at aga .... 0 

x [f(~W(ga,vs,g;;,vB,t) -fi(2)(ga,va ,g;;,vs,t)], (15) 

which is equivalent to (8) for impenetrable point par­
ticles. 

2. SOLUTION OF EQUATIONS OF THE HIERARCHY 

Equation (15) governs the time evolution offi(l) and 
involvesfi(2). By an almost identical procedure, we 
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can derive an equation for fir).) involvingJj(3) and one for 
.0(3) involving.0 (4), etc. In general, in these equations,it 
is not necessary to take into account any interactions 
other than those of the jth particle with the unlabelled 
particles since fi(n) is symmetric with respect to un­
labelled particle interchange. (Since, for the system we 
consider, two particles simply exchange momenta upon 
colliSion, the unlabelled particles behave dynamically 
like an ideal gas.) The equations governing.0(n>, n ~ 1, 
then are 

C~ + K?»)fi(n)(ga,Va, ... ,t) 

= ~i:..na J dvs Ivs - Val [f~j/I)(ga, va,g;;, VS"'" t) 

(16) 

where K?) is the n-particle Liouville operator which 
includes only interactions between particle j and the 
unlabelled particles. These equations form an infinite 
coupled hierarchy which can be exactly solved. We now 
solve the equations to the extent of finding an explicit 
expreSSion for fi(I). 

We first consider the hierarchy of (16) for n '" 2 by 
introducing a new function 

lJj(n) (ga' va,g.r' vy, ••• , t) 

=Jj(n)(ga, va,gy' vy,"" t) 

_fi\n-I)(ga' Va"'" t)h(gy, vy, t), 

where 

j* = j - 1, .0 < gy - Vyt < ga - vat, 

=j+1, ga-vat<gy-v/<O, 

= j, otherwise, 

ana 

h(gy' vy, t) = pho(v) + o(gy - v't)o(vy - v') 

(17) 

for - L < gy - Y/ < L and is zero otherwise. The func­
tion h(gy" vy' t) is just the distribution of particles on the 
line at hme t. The function g?) is manifestly symmet­
ric in the particle coordinates for the n - 2 particles 
whose coordinates are not explicitly shown in (17). 

We now confine our attention to the precollision 
regions of the n-particle phase space in which g.(n) is 
defined. A phase point in a precollision region Jorres­
ponds to an n-particle system for which particle j has 
suffered no collision in its past history under the n­
particle motion. (Note that we have not excluded the 
possibility of the crossing of unlabelled particle tra­
jectories in the past history of the system.) 

Using the fact that 

(~ + Vy _a_\ h(gy' vy' t) = 0, 
at agy J 

we have from (16) that in precollision regions 

where 
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d (n) a a a 
--=-+v - +v -+ ... 
dt(n) at a aga Yagy • 

It should be remarked that the functions g;Vz) appearing 
on both sides of equations of this hierarchy 1are evalua­
ted only in precollision regions of their phase spaces. 
Then, since as is easy to show gJn) = 0 at t =' 0, it 
follows that g?) = 0 in all precollision regions of the 
n-particle phase space. Thus, from (17), we have that 

ff n) (ga' va,g r' vY"'" t) =f}:-l) (ga' va"'" t)h(gy, vY' t) 

(19) 
in precollision regions of the n-particle phase space. 
This relation can be viewed as an exact statement of 
the prinCiple of molecular chaos for the systems which 
we consider. 

Since (16) for n = 1 involves fj(2) only in precolli­
sion regions of the two particle phase space, the fac­
torization of (19) is directly applicable in this equa­
tion. Substitution of (19) for n = 2 into (16) for n = 1 
yields the equation 

Cat + v a~ )fj(l)(X, t) = Yo[fj~P(X' t) - fj(l)(X, t)] 

+ J3 o[fjW(x, t) - fj(l)(X' t)] 

+ limo (g- _ v't) {E(g - vt)(v' :; v)[J}}i(x, t) - fj(1)(x, t)]} , 
~ ... o E(Vt '- g)(v - v')[fjW(x, t) - fj(l)(x, t)] 

(20) 
where X = (g, v), g- = g - sgn (v' - v), E( ) is the unit 
step function, 

(g+L)/t 
130 = J dW(w - v)ho(w) 

g/t 

and 
rg / t 

Yo = J, dw(v - w)ho(w). (g-L)/t 

Because of the o-function term on the rhs of this 
equation,fj (1) is discontinuous at g = v't and conse­
quently lim t ... o o(g - - v't) cannot be simply replaced 
by o(g - vt). In the immediate neighborhood of the dis­
continuity (20) can be simplified to 

(v-v') a f(l) 
a(g - v't) J 

~
E(g - vt)(v' - v)[fjW - fj(l)]j 

= lim o(g- - v't) + • 
t ... o E(vt _ g)(v _ v')[fj~P _ fj(l) 

Integrating this equation across the discontinuity 
yields the following relation between the values Offj(l) 
on either side of the discontinuity: 

lim j,}.(l) (v't - ~,v, t) = lim j,}·W(v't + ~,v, t). (21) 
t .... o ."'0 

Using these relations and those of (10) as boundary 
conditions, we can solve the equation 

which is valid everywhere except at the previously men­
tioned point of discontinuity. 
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To solve this equation, we define the transform func­
tion 7](8) by 

co A 

7](8) = z::; ei ej fj (1) , 
j:-co 

(23) 

which has the inverse transform 

j,.(l) =.1.. J,21f d8 e-iej 7](8). 
} 21T 0 

(24) 

From (22) and (23) we find that 7](8) obeys the equa­
tion 

(~ + v ~) In 7](8) = yo(e te - 1) + Me-te - 1), (25) 
at ag 

which can be immediately integrated to obtain 

7](8,g, v, t) = 7](8,g - v(t - to+), v, to+) exp (t dt[Yo(e ie -.1) 

) 

to+ 

+ f30(e- te - 1)], t> to> 0, 

= 7](8,g - vt, v, 0) exp (1;/ dt[Yo(ete - 1) 

+ J3o(e-fe - 1)]), otherwise, (26) 

where to = (g - vt)/(v' - v) and to+ is infinitesimally 
larger than to' These results follow from integrating 
(25) down to the point of discontinuity at t' = to or to 
t' = 0 if t& does not lie between 0 and t. It is easily 
verified that 

t ( (g+ L)/t f dt'f30 = J dw(wt - g)ho(w) 
S g/t 

1 
(Q+L)/S (g+L)/t) 

~ dw(wS - Q)ho(w) - L J dwho(w) 
Q/S (Q+L)/S 

and 

t dt'yo = p (tit I dw(g - wt)ho(w) 
S (g-L) t 

QIS -1 ,dw(Q - wS)ho(w) 
(Q-L)IS 

- L /Q-L)/S dWho(W)\' 
(g- L)/t ') 

where S is arbitrary and Q = g - vt + vS. It is also 
readily established from (10) and (23) that 

7](8,g - vt, v, 0) = 0 (g - vt)6 (v - v') 

+ etepho (v )E(g - vt)E(L - g + vt) 

xexp[p(g - vt)(e te - 1)] 

+ e-tepho(v)E(L + g - vt) exp[p(vt _g)(e-te _ 1)] 

and from (21) that 

7](8,g - v(t - to.), v, toJ 
= exp[i8 sgn(v - v')]7](9,g - v(t - toJ, v, to->, 

(27) 

(28) 

(29) 

(30) 

where t Q_ is infinitesimally less than to' Finally, from 
(24), (26), (27), (28), (29), and (30), we have that 

j,,(1)(X t) = ~ r 21f 
d8e-tei{o(g - vt)o(v - v') 

} , 21T J 0 

+ phO(V)E(to)E(t - to)E<L - g + vt)E(L + g - vt) 

+ pho(v)[1 - E(t - to)E(to)][eteE(L - g + vt)E(g - vt) 

+ e-teE(L + g - vt)E(vt - g)]} 

x exp[(ete - 1)II(t) + (e- fe - I)j.t(t)], (31) 
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where 
(g+ L)/t 00 

1J.(t) = f dw(wt - g)pho(w) + pL J dwho(w) 
glt (g+ L)/t 

and 
glt j (g- L)I t 

lI(t) = J dw(g - wt)pho(w) + pL dwho(w). 
(g-L)/t -00 

In the limit L ~ OC! and for j = 0 this reduces to the 
results previously obtained by Jepsen5 and Lebowitz 
and Percus.6 

Equation (31) can be expressed in terms of modified 
Bessel functions 8 by means of the identity 

(1/2w) J21f dB e- iek exp[(e ie - l)lI(t) + e- te - l}jJ.(t)] 
o 

= (j.L/ II) k/2 IJ 2(/-.111)1/2] exp[- j.L(t) - v(t)] == Ak (t) (32) 

fj(1) = [o(g - vt)o(v - VI) + phO(V)E(io)E(t - io)]Aj 

+ pho(v)[l - E(tO)E(t - to)] [E(L - g + vt)E(g - vt)Aj_1 

+ E(L + g - vt)E(vt - g)Aj+d. (33) 

3. CONCLUSIONS 

In the usual development of density corrections to 
Boltzmann's equation, an expression for the pair dis­
tribution function is derived by formally solving the 
BBGKY hierarchy subject to some assumed initial con­
ditions about the ensemble (usually that there is no 
initial correlation). The pair distribution function is 
then given as a functional of the singlet distribution and 
is expressed in a denSity expansion. When this result 
for the pair distribution function is substituted into the 
first BBGKY equation, a closed and formally exact 
equation for the singlet distribution function is obtained. 
However, as is well known, all but the lowest order 
terms in the denSity expansion of the pair distribution 
are ill behaved. 

Our exact solution of the hierarchy of Eqs. (16) for 
n ;:. 2 closely parallels this procedure. To illustrate 
this, we write (16) in the form 

== J(f?+l», 

where K (n) is the n-body Liouville operator. This 
equation can be formally integrated to yield 

I?) (t) = exp(- tK (n».t/ .. n-1) (O)h(O) 

(34) 

+ ~I dt' exp[- (t - t')K(n)]J(fj(n+l»(t,), (35) 

where we have made use of the exact, initial factorization 
condition 

exp(- tK (n»fj(n) (0) = exp(- tK (n»fj~n-l) (O)h(O). 

Here j* is defined as before. By iterative substitu­
tion of the members of the hierarchy of (35) into one 
another an expression for fj(n)(t) as a functional of 
!P)(t) can be obtained. (Various values of k occur in 
the expansion.) In particular, for the pair distribution 
function in precollision regions of the pair phase space, 
we obtain the result 

fj(2)(t) =fj<])(t)h(t) + C-U + ... , 
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where the anaiog of the Choh- Uhlenbeck (C- U) term and 
higher correction terms are found to be identically 
zero. The fact that the first term in the expansion 
yields the exact result without correction results from 
the fact that iffj(2) on the lhs of (34) or (35) is evaluated 
in a precollision configuration (in the sense previously 
defined) this is also the case for the distribution func­
tions on the rhs. This is not a result of the simple 
dynamiCS of the system per se, but results from use of 
the identity 

lim .I.
1
·(n) (g-, w,g, v, ••• , t) = lim !«n» (g, v, g-, w, ••• , t), 

.-+0 .-+0 1 
(36) 

which is necessary to establish (16). 

To illustrate this point, we now obtain a formal ex­
pression for fj(2) by formal solution of the BBGKY 
hierarchy equations 

- + K (n) j.(n) = - j dX :...2ll _ !(n+l), 
( 

il ~ 1 il¢. il 
ilt 1 m y ilg ilv 1 

(37) 

where ¢j y is the interaction potential between the jth 
particle and an unlabelled particle whose coordinates 
are Xy = gy' vy' (Here and in the subsequent discussion 
we use Greek letters to denote the coordinates of un­
labelled particles.) It is easy to show that 

Fj(n)(t) = exp(- tK(n» FJ") (0), 

where 

Fj(n) =fj(n) - j dXafj(n+l) + i j dXa jdXBfj(n+2) + .... 

After some manipulation it can be deduced that 

F(2)_S(t)F(l)h·+jd (5(t) -S(t)S(t»f,(Dhh + ... Jj.B - jB.Ij* B Xy jBy jB iy [1*] By' 
(38) 

where 

S~~ = exp(- tK(3»exp[t~v ~ + VB ~ + v ~)J 
1 y ilg ilg, y ilg 

d
B y 

an 
S ~~ = exp(- tK~) exp ftfv ~ + VB ~)~. 

1 1 [\ ilg ilgB IJ 

The S operators have the effect of permuting particle 
coordinates. 

In (37), j* is determined from the exact factorization 
of exp(- tJS~»fj~)(O) whereas the value of [j] depends on 
the S operator that acts on! [~~ hBhy' For S. By' (j] is 
determined from the exact factorization 01 exp(- tK (3» 
fj(3) (0) and, for Sj ~ ~ y , [j] is determined from the fac­
torization of exp l- tJS~»fj~:y(O). In precollision 
regions of the j, f3phase space SJ~ = 1 and hence 

fj~l =fj~)hB + jdXy(SJ~)y - Sn)!mhBhy +. ". (39) 

Now, even though the first term in this expansion is 
rigorously equal to fj~l the Choh- Uhlenbeck term and 
higher terms are nonzero. To be precise, the integrand 
of the Choh- Uhlenbeck term in (39) is nonzero in 
regions where the effect of S}~)y is a permutation of 
coordinates which places particle j on the f3 trajectory. 
The domain of gy for which this is the case grows 
linearly with t (l.e., the length of time interval between 
the initial time and time t). As a result this term is 
ill behaved in exactly the same sense as the usual 
divergent terms in the density expansion of Boltzmann's 
equation. The advantage of the hierarchy (34) to that of 
(37) is then obvious. 
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The divergent terms arise from the fact that the be­
havior of the whole system is analysed in terms of the 
dynamics of small numbers of isolated particles. It is 
quite straightforward to develop a series of approxima­
tions to the one-particle distribution functionJj<!), which 
takes into account the interaction between a small group 
of particles and the rest of the fluid. 

Consider the system of equations (20). Using the 
notation (Jj(l.» k for the kth approximation to /; (1), we 
can solve (20) along with the boundary condihons (10) 
by expressing (Jj(l)h in terms of UP»k-1 by means of 
the following equations. 

(l... + v l...) (Jj(l». = Yo[(Jj9-1)k-1 - (Jj(l)h] + {3o[(JjWh at ag 
- (Jj(l)h] + D[(Jj9-ih-1' (Jj(l)h, (Jj£li)k], j < 0, (40) 

where 

D[Jj9-i,fj<l') ,Jj£li] = \~IlJ [15(g - ~ - v't)€(g - vt)(v I - v) 

x (Jj£li - Jj(l» + l5(g + ~ - v't)€(vt - g)(v - v') 

x (JjW. - Jj(l»)] 

and (Jj(l»O = O. 

The kth approximation to Jj(l) is related to its exact 
value as given by (33) by expanding the modified Bessel 
function in a power series by means of the identity8 

1 00 (t z2) 1 
~(z) = (2"z)j L; .. 

1;0 l!r(j + l + 1) 

Hence 

(Jj(l~k = [15(g - vt)l5(v - v') + pho(v)€(to)€(t - to)].A.J(k) 

+ pho(v)[1 - €(to)€(t - to)] [€(L - g + vt)€(g - vt)~'!'l 

+ €(L + g - vt)€(vt - g)A}:i], (41) 

where 

A?) = (~y12 (/..IV) Ij V2 I~ (/.Lv) I[l! ( Ij I + l) 1]-1 
x exp[- v(t) - /-I(t)]. 

The retention of the term exp [- v(t) - /.L(t)] in its 
unexpanded form ensures that, to every order of approxi­
mation,Jj(l) is finite for all times and yields a finite 
approximation to the coefficient of self-diffusion which 
is the only important transport coefficient for this sys­
tem. Each approximation approaches zero for large 
times. However, the limit of the sequence of approxi­
mations is correctly normalized for all times. This 
procedure therefore differs from that suggested, e.g., 
by Dorfman and his associates9 and Kawasaki and 
Oppenheim. 1 0 

The success of this method of approximation in yield­
ing finite transport coefficients gives some hope that a 
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similar method of approximation could be devised for 
models with short-ranged forces of a more general 
nature, and in two or three dimenSions. The important 
features are the correct formulation of the prinCiple of 
molecular chaos and the adoption of a method of succes­
sive approximations which takes account of the scatter­
ing by particles of the environment of the particles 
involved in three-, four:', or many-body collisions. 

The foregOing considerations do in fact suggest a 
perturbation technique for solving more complicated 
problems. As a simple example we consider the case of 
point particles which have a velocity independent proba­
bility R of being reflected upon collisions where 0 .. 
R .. 1. For the case of impenetrable points R = 1 and 
for an ideal gas R = O. 

Although this system is not dynamically determinis­
tic (except in the R = 1 or R = 0 cases), it well illu­
strates the techniques which can also be applied for 
deterministic systems. The hierarchy equations in 
this case are 

(l... + K (n)\j.(rt) = R 100 

dw I w - v I (p /:('1+1) _ 1,.('1+1)\ at J ) -00 )) J 
=R JOO dwlw-vl(f(~+1)_/;(rt+1») 

-00 \" (;) J 

+ ~R 1: dwlw - vi (PJj(rt+1) _fS,-/l~. 
(42) 

Here P is an operator which permutes the coordin­
ates of thejth particle (i.e.,g, v) with those of the un­
labelled particles with which it is about to collide 
(i.e.,g-, w). 

The quantity ~ = 1 is a marking parameter which 
indicates that the term it multiplies is presumed to be 
small. (This term vanishes in both the R = 0 and R = 1 
limits.) We assume asolution to (42) of the form 

The ~ 0 equation is 

(aa
t 

+ K (n») (Jj(n»o 

(43) 

= R 1: dw I w - v I [(f8)+1»0 - ~(n+1»0]' (44) 

which can be solved for n ~ 2 in precollision regions 
as before to obtain 

Ur»)o = ~.~n-1»)oh, (45) 

where it is assumed that at t = 0 (Jj(n\ = Jj(n) • A 
closed equation for (Jj(l»!l can be obtained by substitut­
ing (45) for n = 2 into (44) for n = 1. This equation can 
be solved in exactly the manner previously discussed 
to obtain 

1 r2" .. 
(j·(l»)o = - Jr d8 e-'J6 T)(8,g, v, t), 

J 21T 0 
(46) 

where 

T)(8,g, v, t) = {15(g - v ' t)l5(v - v') 

+ eifJ pho(v)€(g - vt) exp[ pig - vt I (e ifJ - 1)(1 - R)] 

+ e- i 6 pho(v)€(vt - g) exp[ pi vt - g I (e i e - 1)(1 - R)]} 

x {I + €(t - to)E(tO)(R - 1) exp[iB sgn(v. - VI)]} 
X exp[(ei6 - 1)Rty(g/t) + (e- i6 - 1)Rt{3(g/t)]. (47) 
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Here 

(3(v) = p j'>C) dw(w - v)ho(w) 
v 

and 
y(v) = p r dw(v - w)ho(w). 

-00 

This result for TJ assumes a box of infinite length. 

As is to be expected, (46) provides a rigorously cor­
rect expression for fj(l) in the two limiting cases R = 0 
and R = 1. Furthermore, the factors exp[ p Ig - vt I 
(e±iEl - 1)(1 - R)] assure thatfj(l»)o is exponentially 
damped in the long time limit if R '" 1. This leads us 
to the conclusion that the higher order perturbation 
terms of (43), which from (42) obey equations of the 
form 

C~ + K (n)} u;<n») k = R 1: dw I w - v I [ (flP)+l»)k 

- (fj(n+l»)k] + R 1: dw Iw - v I 

x [p(fj(n+l)h_1 - (flP)+l»)k-d, 

will not exhibit secular time behavior. 

J. Math. Phys., Vol. 14, No. 10, October 1973 

1443 

ACKNOWLEDGMENT 

The authors wish to acknowledge the assistance of a 
grant from the Australian Research Grants Committee. 

·Work done while an Australian Research Grants Committee Fellow 
on leave from Iowa State University, 1971-72 academic year. 

IN. N. Bogoliubov, Studies in Statistical Mechanics, edited by J. deBoer 
and G. E. Uhlenbeck (Interscience. New York, 1962). Vol. I, Chap. I. 

2H. S. Green, Molecular Theory of Fluids (North-Holland, Amsterdam, 
1952). 

3S. T. Choh and G. E. Uhlenbeck, thesis (University of Michigan. 
1958). 

"H. S. Green and D. Hoffman, J. Chern. Phys. 49, 2600 (1968). 
50. W. Jepsen, J. Math. Phys. 6, 405 (1965). 
6J. L. Lebowitz and J. K. Perc us, Phys. Rev. 155, 122 (1967). 
7L. Blum and J. L. Liebowitz. Phys. Rev. 185,273 (1969). 
8M. Abramowitz and I. A. Stegun, Handbook of Mathematical 

Functions (Dover, New York, 1965). 
9J. R. Dorfman and E. G. D. Cohen. J. Math. Phys. 8,282 (1967); M. 

H. Ernst, L. K. Haines, and J. R. Dorfman, Rev. Mod. Phys. 41, 296 
(1969). 

10K. Kawasaki and l. Oppenheim. Phys. Rev. 139,AI763 (1965). 



                                                                                                                                    

Generalized isoperimetric inequalities. 11* 
J. M. Luttinger 

Department of Physics, Columbia University, New York, New York 10027 
(Received 19 April 1973) 

Continuing the development of a previous paper on generalized isoperimetric inequalities (i.e., 
rearrangement inequalities for Green's functions), we extend the theory to the case of Green's 
functions for a potential which approaches zero at infinity. Specialization to domain potentials and 
long times gives P61ya and Szego's isoperimetric inequality for the electrostatic capacity. Long times 
and a more general potential give a new isoperimetric inequality (for the "scattering length" of a 
potential). We also obtain from another specialization a curious isoperimetric inequality for the trace 
of the phase shift operator of scattering theory (for a given energy). 

1. INTRODUCTION 

In a previous paper, 1 a generalization of the usual 
isoperimetric inequalities of geometry and physics was 
given. The new inequalities may be expressed as ine­
qualities for the Green's function of a particle in a 
potential <p (in quantum language), or that of diffusion 
in the presences of distributed sources and absorbers 
of particles (proportional to <p). To simplify the dis­
cussion in Paper I, we only treated the case where qy 
becomes infinitely large at infinity, so that the Hamil­
tonian has a purely discrete spectrum. This not only 
has the disadvantage of incompleteness, but also does 
not include (in a direct way) the important isoperi­
metric inequalities for the electrostatic capacity.2 Now 
in I, the inequalities were based on a certain rearrange­
ment inequality for multiple integrals3 which, when 
translated into Green's function inequalities, is not suf­
ficiently general to discuss all cases where <p approa­
ches zero (say) at infinity. It proves not to be difficult 
to obtain another rearrangement inequality4 which 
enables us to treat this case more generally. The re­
sulting Green's function inequalities are analogous to 
those of I. When specialized for long "times", and qy 
such that the particle stays outside a certain domain, 
we find the usual isoperimetric inequalities for the 
capacity of that domain. If the potential is such that 
there are no bound states, the general inequality yields 
isoperimetric inequalities for the "scattering length" 
and for the "phase shift operator" which occur in the 
quantum theory of scattering. (These are new results.) 

The paper is organized as follows. In Sec. 2, the basiC 
inequalities are derived in one or more dimensions. In 
Sec. 3, various specializations are made and new iso­
perimetric inequalities are obtained. 

2. GENERAL FORM OF INEQUALITIES 

We first discuss one-dimensional problems. Con­
sider a particle with the Hamiltonian operator (If = 
m = 1) 

1 d2 
H = - - + <p(x). 

2 dx2 
(2.1) 

In this paper we shall limit ourselves to the case 
where qy approaches zero as (x) approaches infinite. 
The Green's function Gt (x, x' ! qy) is defined by 

oG(x xllfll) 
HGt(x,x'!qy)+ t' 't' =0 (t>O) 

at 
with 

(2.2) 

Gt(X,x'!qy) = lim Jco flV dr..···dx -lP(x - x...)e-"\,'P(x2 ) 
n*O -co~ -~ n -~ 

X P(Xoz - ~)e -An<P(XJ) P(xn-
1 

- x')e -An<P(X,), (2.4) 

where 

~ = tin - 1, 

P(X) == 1 e-x212 t:.n • 
(21T~)1/2 

It is necessary to distinguish three cases: 

(a) qy .;; 0 (purely attractive potential), 
(b) qy ~ 0 (purely repulsive potential), 
(c) qy has both positive and negative regions. 

(2.5) 

(2.6) 

Case (a): Since qy has a symmetrically increasing 
rearrangement (which we call *[<p]) reasoning identical 
to that of I yields the inequality6 

Jco dxdx'Gt(x,x'lqy )a(x')/3{x)r(x' - x) -co co .;; J dx dx'Gt(x, x'! *[ qy]) [a(x)]* [/3(x)]* [r(x' - x)]*, -co 
(2.7) 

where a, /3, r are nonnegative, and [a]* is the symmetri­
cally decreasing rearrangement of a(x). This only 
makes use of the rearrangement inequality (2.9) of I. It 
is possible to put (2.7) in another form which is often 
more convenient. The special case of (2.7) where a, /3, 
r are already symmetrically decreasing functions may 
be written 

JCO dxdx'[Gt(x,x'!O) - Gt(x,x' Iqy)]a(x'}/3(x)r(x' - x) -co 
~ Jco dxdx'[Gt(x,x'!O) - Gt(x,x'!*[qy])] 

-co 
x a (x')/3(x)r(x' - x), (2.8) 

where 

1 Gt(x, x' 10) = -- exp[- (x - x')2/2t] == GiO)(x - x') • 
.J2iif (2.9) 

This form is particularly interesting if we let a and 
/3 approach unity and r approach unity or a Dirac 6-
function. These cases give the formulas 

Jco dxdx'[G/O)(x -x') - Gt(x,x'!qy)] -co 

and 

co Jco (2.3) L" dx[G/O){O) - Gt(x,x!qy)] ~ _codx[GlO)(O) - Gt(x, x I *[qy])] 
(2.11) 

to which we shall return later. We may write G as a Wiener integralS: 
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Case (b): In this case ep does not have a symmetri­
cally increasing rearrangement, and (2.9) of I becomes 
meaningless. However, the following inequality4 may be 
proved. Let Fi(x) satisfy 0 .,; Fi(x) .,; 1 and let Hj(x) be 
a symmetrically decreasing function of x. Then 

fex) (1 - Ii [1 - Fj(xi»\ r'j Hi(x, - xi+1) dXi -00 1. I) J 

;;" fex) (1 - r'j {Fi(Xi ) ]1) n Hi(Xi - Xi+1) dxi , 
-00' • 

(2.12) 

where xn+1 == Xl. 
Now suppose we define 

1 - Fi(x) == fi(x). (2.13) 

Clearly, 

1 - [Fi(x)]* = *[Ji(x)], (2.14) 

so that we may also write (2.12) as 

foo (IJ Hj(x; - Xi +1) - IJ.fi(xj)Hj(Xj - xj+1)\ IJ dxj 
-00 , J '} l 

;;" foo (I) H;(x; - xi+1) - IJ * [.fi(xj}] Hi(Xi - Xi +1)\ I) dx; • 
-00 I " 'J J 

(2.15) 
Applying (2.15) to (2.4), we obtain 

foo [CP(x - x') - Ct(x, x' lep)] r(x' - x)dx 
-00 

;;" Joo [CP(x - x') - Ct(x, x' I *[<p ])] r(x' - x)dx, 
-00 (2.16) 

where r(x) is a symmetrically decreasing function of x, 
and we have made use of the fact that if 

f(x) = e- A " (x), 

then 
*[J(x)] = e-An['P(x)l*. 

(2.17) 

(2.18) 

If we again specialize r(x) to be unity or a Dirac 0 
function, we obtain 

feo [ClO)(x - x') - Ct(x, x' I ep» dxdx' 
-00 

;;" Joo [CfO)(x - x') - Ct(x, x'i [ep ]*)] dx dx' (2.19) 
-00 

and 

i:[c[O)(O) - Ct(x,xlep)]dx ~ l)c[O)(O) - Ct(x,xl[ep]*)]dx. 
(2.20) 

Case (c): In this case ep has neither a symmetri­
cally increasing nor a symetrically decreasing re­
arrangement. We can, however, establish inequalities 
which go over smoothly into (2.10), (2.11), (2.19), and 
(2.20) for Case (a) or Case (b), as follows. Write 

ep(x) = ep+(x) + ep-(x), 

where 

ep+(x) = ep(x) if ep(x) ~ 0 and 

= 0 if ep(x) .,; 0 

Now the following inequality holds: 

(2.21) 

ep-(x) = ep(x) 

if ep(x) .,; 0 

= 0 if ep(x) ~ o. 

Gt(x,x'Iep) + Ct(x, x' 10) - Ct(x,x'lep+) - Gt(x,x'iep-) .,; O. 
(2.22) 

The proof of (2. 22) is trivial if we use Kac' repre­
sentation5 for the Green's function 
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I t I x(t) = x) 
Gt(x,x'lcp) = G[O)(x -x') \!Z.XP(- 10 [x(T»dr x(O) =x' 

The left hand side of (2.22) then becomes 

CIO)(x - x') < 1 - exp~ ;;,t ep+[X(T)]dT) 

(2.23) 

X[l- exp(-Iatcp-[X(T)]dT)] I:(~~ ::). (2.24) 

However, (2. 24) is clearly nonpositive since the first 
factor we are averaging is nonnegative (ep+ ;;" 0), while 
the second factor is nonpositive (ep- .,; 0).7 

We may write (2.22) as 

CiO)(x - x') - Ct(x,x'lep) 

~ [C[O)(x - x') - Ct(x, x' I cp+)] 

+ [GIO)(x - x') - Gt(x, x' 1 ep-)J. (2.25) 

Multiplying both sides of (2.25) with r(x' - x) [r(x) 
being a nonnegative symmetrically decreasing func­
tion) and making use of (2.8) and (2.16), we have 

foo [C[O)(x - x') - Ct(x,x' Icp)] r(x' - x)dxdx' 
-00 

;;" foo [CfO)(x -x') - Ct(x, x' 1 [cp+]*)]r(x' -x)dxdx' 
-co 

+ .r [CfO)(x - x') - Gt(x, x' I *[cp-])]r(x' - x) dxdx. 
-00 

(2.26) 
The result (2.26) is the most general rearrangement 

inequality (of the type considered here) for the Green's 
function, when the potential goes to zero at infinity. 

In more than-one dimension (d dimensions, say) we 
may proceed just as in I. That is, we use the d-dimen­
sional analog of (2.4) and integrate over a single vari­
able (say z) first, holding the others constant. This at 
once yields the analog of (2.26) 

foo [G[O)(r - r') - Gt<r, r' I cp)]r(r' - r) drdr' 
-00 

;;" fex) [G[O)(r - r') - Gt(r, r' 1 [<p+]:>Jr(r' - r) drdr' 
-ex) 

+ foo [G[O)(r - r') - Gt(r, r' I:[ep-])]r(r' - r)drdr', 
-00 

(2.27) 
where 

G[O)(r _ r') == 1 exp (_ Ir - r' 12) . 
(2rrt)d/2 2t 

(2.28) 

[J(r)]* is the symmetrically decreasing rearrangement 
off(r) viewed as a function of z with the other variables 
held constant; ~[J(r)] is the symmetrically increasing 
rearrangement off(r) viewed as a function of z with the 
other variables held constant, and r(r) is a symmetri­
cally decreasing function of z for the other variables 
fixed. The integrations are over the entire d-dimen­
sional Euclidean space. 

The symmetrization process leading to (2.27) may 
be applied again to some other direction (rather than 
the z direction). By continuing this procedure with 
respect to "all possible directions" we will finally 
obtain (2.27) with [ep+]~ replaced by [ep+]! (the decreas­
ing rearrangement of ep + which is a function of I r I 
alone), ~[q1"] replaced by :[cp-] (the increasing rearrange­
ment of ep+ which is a function of 1 r I alone), and r(r) 
a decreaSing function of I r I alone. 
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3. APPLICATIONS 

We now consider applications of the inequalities of 
the last section. We shall restrict ourselves to three­
dimensional considerations. 

(A) Suppose we have a potential ep and a finite do­
main D such that 

ep(r) = ro if l' belongs to D 

= 0 otherwise. (3.1) 

This is a purely repulsive potential, so that the in­
equality (2.27) applies with ep- = O. For this we need 
the symmetrically decreasing' rearrangement of ep(r). 
Just as in I, this is given by 

[ ep (1')]: = ro if l' belongs to D: 

:::: 0 otherwise, (3.2) 

where D: is the Steiner symmetrization of the domain 
D with respect to the plane z = O. Using obvious nota­
tion, (2.27) becomes 

1: (G[O)(r - 1") - Gt(r, r'iD»r(r' - r) d1'dr' 

;;.1: (GSO)(1' - 1") - Gt{r, r'IDi)r{1"- r)d1'dr'. 
(3.3) 

For the moment, let us consider the case r = 1. 
Then (3.3) becomes 

1: (G[O)(r - r') - Gt(r, r'ID»drdr' 

;;.1: (0[.0)(1' - 1") - Gt(r,r'ID:»drdr'. (3.4) 

It is interesting to evaluate this formula in the limit 
of small and large t. In the limit of small t, a com­
pletely elementary calculation yields for the leading 
terms 

C (G[O)(1' - r') - Gt(r, r'ID) drdr ' 

== Q(D} + ..fiJi S(D}.,ff + .. " (3.5) 

where Q(D) is the volume of the domain D, and S(D) is 
the surface area of D. Therefore, since OeD} = U(Di}, 
(3.4) reduces to 

SeD) ;;. SeD:) (3.6) 

which is the usual result for the effect of Steiner sym­
metrization on the surface area of a domain. 

In the limit of large t, the calculation is a little more 
difficult, though still straightforward. Fortunately, it has 
already been carried out by Spitzer.s The first two 
terms are given by 

foo (G[O)(r - r/) - Gt(r, r'ID»drdr' 
-00 

= 21TC(D)t + 4·fi1i'C2(D).,ft + . ", (3.7) 

where C(D) is the electrostatic capacity of the domain 
D. Therefore, for large t (3.4) becomes 

(3.8) 

which is P6lya and Szego's well-known result9 for the 
effect of Steiner symmetrization on the electrostatic 
capacity of a domain. 

(B) Suppose we have a purely repUlsive potential ep, 
and again consider (2.27) for r = 1. The case of small 
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t and a sufficiently smooth potential is easily worked 
out; (2.27) reduces again to a trivial rearrangement 
inequality. For large t the calculation is again some-­
what more involved. It can be shown1 0 

that 

1 Joo a(cp) == 11m - (G[O)(r - r') - Gt(1', 1" I cp» dr dr', 
t ° 211't -00 (3.9) 

where a(ep) is the scattering length for the potential ep. 
(In particular this means that the scattering length for 
a potential of the form (3.1), is just given by the elec­
trostatic capacity of the domain.) Therefore, (2. 27) 
reduces to 

a(ep) ;;. a ([epJ:), (3.10) 

a new isoperimetric inequality. 

(e) Now we consider (2. 27) for a repulsive poten­
tial and r{r) = OCr), so (2.27) becomes 

B(ep) ;;. BQ ep J:), 
where 

B(ep) =J: (G[O)(O)-Gt(r,rlep»dr. 
-00 

(3.11) 

(3.12) 

This type of object [B(ep)] arises naturally in several 
problems of statistical mechanics. It was first studied 
by Beth and Uhlenbeck14 (in connection with the quan­
tum treatment of the second virial coefficient), who 
limited themselves to the case where cp(r) is a function 
of ir I alone. They found that the result could be ex­
pressed as a sum of energy integrals over the scattering 
phase shifts for different angular momenta. The result 
for a general (1. e., nonspherically symmetric) potential 
may be written12 

(3. 13) 

where 'fl€ is the phase shift operator of scattering theory 
(to be defined below) and Tr is the operation of trace 
(also to be defined below). Let the scattering operator13 

(for the potential cp) taken between momentum states 
k and k' be denoted by (kl Slk'). The scattering opera­
tor conserves energy, i.e., (kl Slk') contains as a factor 
the energy conserving 0 function o(k2/2 - k'2/2). To 
take explicit advantage of this, let us describe the states 
It, k' in spherical coordinates, k, 8, tj> and k', 8', tj>' and 
denote k by ../2i., k' by .fiE'. Then we may write 

(3.14) 

where 11 = cos B, 11' = cosB'. Now the unitary property of 
S, Le., 

f dk"(kl Slk")(k' I Slk") = 6(k - k') 

(bar denoting complex conjugate), implies that S€ is 
unitary in the sense 

(3.15) 

Since S€ is unitary, it must have a representation of 
the form 

(3.17) 
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where 'f/€ is an Hermitian operator. 'f/. as defined by 
(3.17) is the 71. of (3.13) and the operation of Tr is 
simply 

(3.18) 

since 71. is hermitian, Tr(1).) is real. 

The inequality (3.11) with B(cp) given by (3.13) is a 
quite general isoperimetric inequality for the trace of 
the phase shift operator. Nothing new comes from con­
sidering the simple cases of very small and very large 
t. That is, they give the same inequalities as Cases A 
and B in the respective limits. 
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The generalized isoperimetric inequalities for rearranged Green's functions, which have previously 
been discussed for a rearrangement process analogous to Steiner symmetrization, are obtained for a 
type of rearrangement analogous to circular symmetrization. It is also shown how rearrangements 
analogous to spherical and Schwarz symmetrization may be defined and considered as limiting cases 
of previously discussed rearrangements. 

1. INTRODUCTION 

In previous papers1 we have found and investigated a 
class of "rearrangement" inequalities for certain 
Green's functions (which could be regarded as the 
Green's functions for a quantum mechanical particle in 
a potential, or for the diffusion of particles in the pre­
sence of absorbers and creators of particles). These 
were called 'generalized isoperimetric inequalities' 
because they reduced in very special cases to the type of 
isoperimetric inequalities long known in mathematics 
and physics. 2 These latter inequalities are all of the 
type which involve the "Steiner symmetrization" of a 
domain. Now other types of symmetrization procedures 
which also give rise to isoperimetric inequalities are 
known. 3 The question arises as to whether these other 
symmetrization procedures have analogous generaliza­
tions to Green's function inequalities, similar to the 
ones established in Papers I and II. 

In this short note we shall deal in detail with only one 
important case, the analogue of "circular" symmetriza­
tion. 4 We shall show that this does have a very simple 
generalization to Green's function inequalities. Just as 
in the previous work, the results are an almost trivial 
consequence of another new rearrangement inequality 
for multiple integrals. This inequality-different from 
the ones used in I and II-will be used here, but the proof 
(due to R. Friedberg and myself) will be published else­
where. (This is partly due to the complexity of the 
proof, but also because we believe that the inequality may 
be of some interest in other contexts.) 

2. NEW GREEN'S FUNCTION INEOUALITIES 

We begin our discussion with two-dimensional problems, 
the type of symmetrization we are discussing not being 
present in one dimension. The generalization to higher 
dimensions will be trivial.) Consider a particle with the 
Hamiltonian operator 

H =-~ (~ + ~) + ep(x,y). 
2 ax2 ay2 

(2.1) 

The Green's function Gt(r,r'lep) is defined by 

aGt(r,r'lep) 
HGdr, r' 1 ep) + = 0 (t > 0) (2.2) 

at 
with 

limGt(r,r'lep) = o(r-r'). (2.3) 
t .... o 

r stands for the vector (x, y) and oCr) is the Dirac 0 
function in two-dimensional space. 

Let us represent G t as a Wiener integralS 

Gt(r,r'lep) =Um J dr 2 dr 3 ···drnP(r-r 2 ) 
n .... oo 

X e-t!.,,<P(r2 JP(r
2 

- r
3
)e- A n<P(r3) •• • P(r

n
-

1 
- r'), (2.4) 
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where 

An = tin (2.5) 

and 

per) = _1_ exp (- x
2 

+ Y2). 
211'An 2An 

(2.6) 

(The integrals are over the entire space, unless other­
wise indicated.) 

Now conSider the quantity J (ep) defined by (a, (3, r ~ 0) 

J(ep) = J drdr'G t (r,r'lep)Ol(r){3(r')r(r',r). (2.7) 

Using (2.4) and rearranging the notation slightly, we 
have 

J(ep) = lim J dr 1dr 2 '" drn Ol(r1)P(r1 - r2)e-C, n<PCr 2 ) 

" .... 00 

x P(r2 - r 3 )e- A n<pCr 3 ) • • • P (r n-1 - r n){3(r n)r(r n ,r 1)' 

Let us introduce polar coordinates for the r i inte-(2. 8) 
grations dr i =ridridCPi(- 11' "" cf>t"" 11'), and do the cf>i in­
tegrations first. Note that 

peri -r i +1) 

1 (re + re+l - 2rir i-t-1 cos(cf>t - cf>i+l») = -- exp -
27TAn 2An 

(2.9) 
is a monotonically nondecreasing function of cos 
(cf>t - cf>i+1)' We assume also that as far as the cP, cf>' 
dependence of r(r, r') goes, it is a monotonically non­
decreasing function of cos(cf> - cf>'). [This is achieved 
most easily by chOOSing r(r, r') to be a monotonically 
nonincreasing function of 1 r - r' I.] We now make use of 
the following rearrangement inequality for multiple in­
tegrals. 6 

Let ii (cf>)(1 "" i "" n) be a periodic function of cf> with 
period 211'. Let [It (cf»] * be the symmetrically decreasing 
rearrangement of ii in (- 7T ,11') about the origin cf> = O. 
Finally hi (a)(- 1 "" a "" 1) is a monotonically nondecreas­
ing function of a. Then 

J" n n [Ii (cf>i)hi(coS(cf>i - cf>i+l»dcf>;] 
-1l" i=l 

"" .Ci~[[li(cf>i)]*hi(COS(cf>i- cf>i+l))dcf>i]} (2.10) 

where cf>n+1 == cf>1' 

Applying (2.10) to the cf>i integrations in (2.8), we ob­
tain at once the inequality 

J drdr' G t (r, r' I ep)ol (r){3(r' )r(r', r) 

'" /drdr' G t (r, r' 1:[ ep])[ a (r)] : [(3(r' )]: (r', r), (2.11) 

where ;[ ep(r)] is the symmetrically increaSing re­
arrangement of ep(r) (viewed as a function of cf> for 
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fixed r) in (- 1T, 1T) about the origin cp = 0, [a(r)]; the 
analo~ous symmetrically decreasing rearrangement of 
a(r) {We note in passing that [a(r,e,cp)]; = ;[a(r,e, 
1T-cp)].} 

Similar ly , we obtain 7 

J f1 [G t (r k, r k, 1 cp)O!k(rk)f3k(rk)rk(rk,rk)drkdrk] 
k=l k 

~ J kryl[Gtk(rk,rk 1 ; [cp])[u k(r k)];[f3k(rk)]; 

x rk(rk,rk)drkdr~l, (2.12) 

where r m = ru Uk' f3 k , r k are nonnegative, rk(r;',r k ) de­
pends on CPk' cp;' only through COS(CPk - cP/') and is a non­
decreaSing function of cos(CPk - CPk) for rk,rl, held 
fixed. 

Again, various specializations of (2.11) are of parti­
cular interest. 

A. tjJ approaches infinity at infinity. 

Specialization of O!, 13, r yields 

Jdrdr'Gt(r,r'lcp) ~ J drdr'Gt(r,r'I;[cp]), 

J drG t (r, r 1 cp) ~ J drG t (r, r 1 ; [ cp]). 

(2.13) 

(2. 14) 

(2.14) is an inequality for the partition function (Cf. I). 
For large t, it yields the result that the smallest charac­
teristic value of the Hamiltonian of a particle in a poten­
tial cp is greater than or equal to the smallest charac­
teristic value of a particle in the potential ; [ cp]. For 
when t is small, the limiting result depends on the nature 
of cp. For a sufficiently smooth potential (2.14) reduces, 
after a little manipulation [Cf. I, Eq. (3. 25)ff] to a special 
case of (2.10) for n = 2. On the other hand, suppose cp is 
a "domain potential," i.e., 

cp(r) = {: 
r inside a domain D 

(2. 15) 
r outside D. 

Then from the definition we have at once that 

r inside D; 
r outside D;, (2. 16) 

where D; is just the circular symmetrization of the do­
main D.4 For small t, (2. 14) yields in this case the 
usual result that circular symmetrization does not in­
crease the length of the boundary of D. [Large t for the 
"domain" case yields the result that circular symmetri­
zation does not increase the principal frequency of a 
membrane, while integration of (2. 13) over t gives the 
result that the torsional rigidity of a domain is not de­
creased by circular symmetrization.] 

B. <II approaches zero at infinity 

In this case (as in II) we take O!, f3 to be symmetri­
cally decreasing functions of cP in (- 1T, 1T) around the 
origin. Then we may write (2.11) as 

J drdr'[ G t (r, r' 10) - G t (r, r' 1 cp)O!(r)f3(r' )r(r', r) 

~ J drdr'[ G t (r, r' 10) - G t (r, r' 1 ;[ cp ])]a(r)f3(r') r(r', r), 
(2.17) 

where 

G t (r, r' 1 0) == G ~O) (r _ r') = _1_ exp (_ 1 r - r' 12) . 
21Tt 2t 

(2. 18) 
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Again, two limiting cases are of interest: 

J drdr'[G~O) (r - r') - G t (r, r' 1 cp)] 

~ J drdr' [ G fa) (r - r' ) - G tCr, r' 1 ; [ cp ])] (2. 19) 

and 

J dr[ G ~O) (0) - G dr, r 1 cp)] ~ J dr[ G ~O) (0) - G t (r, r 1 ; [ cp])]. 
(2.20) 

Before we discuss limiting cases of (2.19) and (2.20), 
let us consider the generalization of all these formulas 
to p + 2 dimensions. Take any two-dimenSional planar 
subspace and call rectangular coordinates on it x and y; 
call the remaining rectangular coordinates (xv x2 ,'" , 

x p ) == p. [A point r has the coordinates (x,y,xl,X2"" 
x p)'] Now introduce polar coordinates in the (x,y) plane, 
x = a coscp,y = a sincp. The volume element becomes 

dr = adpdadcp (2.21) 

and the distance between two points rand r' is 

Ir - r' 12 = Ip - p' 12 + a2 + a'2 - 2aa' cos(cp - CP'). 
(2.22) 

The entire analysis is identical to the two-dimensional 
case, except that per) is replaced by 

(2.23) 

and G }O) (r - r') by 

G(O)(r-r')- 1 exp(lr~tr'12). (2.24) 
t - (21Tt) (p+2) /2 

The important point is that because of (2.21) and (2.22) 
the cP integrals are of the same form as in the two­
dimensional case, and (2.10) applies. Therefore, all the 
inequalities that we had for the two-dimenSional case 
remain valid in an arbitrary number of dimensions 
(greater than two) if we interpret ; [ cp] as the symmetri­
cally increasing rearrangement of cp viewed as a func­
tion of cp, p and a being held fixed. 

Just as in n, the most immediately interesting conse­
quences of (2.19) and (2.20) come from the large t 
limit. If we call the scattering length for a particle in 
the potential cp (with no bound states) a( cp), then (2. 19) 
reduces to (Cf. II, Eq. (3. 9)] 

if cp becomes a domain potential of the form 

cp(r) = {: 
r belongs to a domain D 

r not in D, 

then one sees immediately that 

;[ cp(r)] = r 
.0 

r belongs to D; , 
r not in D* , 

<I> 

(2. 25) 

(2.26) 

(2. 27) 

where D; is again the circular symmetrization of the 
domain lJ. In this case, as in II, the scattering length 
becomes the electrostatic capacity C(D) of the domain 
D (in three dimensions) and we obtain the result 

(2.28) 
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So far we have only considered the process of circular 
symmetrization for one fixed coordinate system. We 
can now continue the process (in more than two dimen­
sions) by considering symmetrization with respect to a 
new coordinate system related to the old by an ortho­
gonal transformation of coordinate axes. Suppose we 
continue this process by symmetrizing with respect to 
"all possible" rotated sets of coordinate axes. We shall 
assuine that for a reasonable potential this process con­
verges to a unique limit. ConSider the three-dimensional 
case (for simplicity only). Then cp(r) = cp(r, e, </», 
a(r) = 0 (r, 0, </», etc., are rearranged by the process 
only on the variables 0, </>. We would expect on intuitive 
grounds (though we have not proved it) that just as re­
peated Steiner symmetrization with respect to different 
axes of a function of x and y leads to a function of 
x 2 + y2 alone, that this process would lead to a depen­
dence on 0 alone. Define ; [ cp] to be the (unique) re­
arrangement of cp(r, 0, </» (r held fixed) which is a sym­
metrically increasing function of 0 alone, and define 
[0]; to be the (unique) rearrangement of 0 (r, 0, </» (r 
held fixed) which is a symmetrically decreasing function 
of 0 alone. That is, 

r J.21I e(o(r,O,</» -g) sinOdOd</> 
o 0 

and 

= f J. 2rr e([ 0 (r, 0)]; - g) sinOdOd</> o 0 

r J. 2rr e(g - cp(r, 0, </>)) sinOdOd</> 
o 0 

J
1T

J
21T = e (g - e*[ cp(r, e)]) sinOd8d</>, 

o 0 

(2.29) 

(2.30) 

where g is a real number and e is the step-function 

{

1 g ~ 0 
6(g) = . 

Og< 0 
(2.31) 

{We mention in passing that 

; [o(r, 0)] = [0 (r, 1T - 0)]; .} 

From what has been said above, it is clear that we 
would then expect results like (2.11) to still be valid if 
the symmetrization processes : [ cp], [ 0 ]; , etc. , be re­
placed by : [ cp], [0]; , etc. On the other hand, if cp is a 
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domain potential such as is given by (2. 15), we see at 
once that 

r inside D; 
r outside D; 

, (2.32) 

where D; is the "spherical" symmetrizations of the do­
main D. Thus, in the nonrigorous sense of this discus­
sion we have shown that spherical symmetrization has 
an analog for Green's function rearrangement inequali­
ties. 

Finally, we mention that in the same spirit as the 
above discussion another important symmetrization 
procedure, namely "Schwarz" symmetrization, 9· may be 
considered as a limiting case of the Steiner type of sym­
metrization used in I and II. That is, if we conSider the 
symmetrization process of I : [cp(x,y,z)] repeated with 
respect to "all possible" coordinate systems rotated 
from the original one around the z axis by different 
amounts, we would expect ultimately to end up with a re­
arranged function which only depends on p = (x2 + y2)1/2. 
Call this; [cp(p, z)]. Again, whim cp is specialized to a 
domain potential like (2. 15),we find that ;[cp] is re­
duced to the domain potential of a domain D; which is 
just the Schwarz symmetrization of D. 
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Biedenham's lemma is used to compute the outer multiplicities of the irreducible components of the 
tensor product of two irreducible representations of a complex simple Lie algebra L with highest 
weights A and A'. The lemma is applicable if for all weights /L of A, we have that A' + /L is a 
dominant integral form. This paper deduces a condition written in terms of the root system of L 
and the coordinates of A and A' which is equivalent to A' + /L being a dominant integral form for all 
weights /L of A. 

1. INTRODUCTION 

One tool which is available to compute the outer multi­
plicities of the tensor product of two irreducible repre­
sentations of a complex simple Lie algebra is the Bieden­
harn lemma. 1 When this lemma is applicable, it says 
the outer multiplicities are equal to the respective inner 
multiplicities. To state the lemma precisely we intro­
duce the following notation. Let L be a complex simple 
Lie algebra, and let p and p be irreducible representa­
tions of L with highest weights A and A', respectively. 

Definition: The highest weight A' dominates A 
(written A' » A) if for all weights /.l E A(A), the weight 
system of A, A' + /.l is a dominant integral form. 

Lemma (Biedenharn): If A' » A, then the outer multi­
plicity of the representation with highest weight A' + /.l, 
m ~;? == nt where /.l is a weight of p and nt is the inner 
multipliticity of /.l in p. Furthermore, any irreducible 
component of p' I)<) p has a highest weight of the form 
A' + /.l. 

In this paper we develop an equivalent condition to 
A' » A which is computationally oriented. This result 
extends those given by MacFarlane, O. Raifeartaigh, and 
Rao. 2 Furthermore, our method shows the underlying 
reasons for their results and does not necessitate case­
by-case checking. 

For a more thorough discussion of representation 
theory and facts from Lie algebras, the reader is re­
ferred to one of the recent standard books.3 The con­
ventions and notations which we use are given below: 

a 1 , .•• ,az are the simple roots of the Lie algebra, 

(, ) 

I 

denotes the inner product induced by the 
Killing form, 

denotes the Weyl reflection defined by the 
root {3, 

are the fundamental weights, 

denotes the weight system of a representa­
tion with highest weight A, 

/.l == ~ mj \ is a dominant integral form if for each i, mj 
j~l is a nonnegative integer. 

2. FACTS ABOUT ROOTS AND WEIGHTS 

For j == 1, ... , 1 let Y j be the highest root of L such that 
(Yj,Yj) == (aj,aj ) and write 

I 

Yj == ~ clj)ai • 
i ~1 

The cl j), 1 :5 j :5 1, are positive integers. 

Lemma 1: For each j, 1 :5 j :5 1, and for every 
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positive root {3, we have ({3, Yj) === O. 

Proof: Since each element of the Weyl group pre­
serves the inner product, we have (SaYj' SaYj) == 
(y j' Y j)' Also SaY j is a root so that 

S .) == . _ 2({3, Y j) <: . 
a (y J Y J ({3, {3) {3 - Y J 

by the maximality of Yj' 

Consequently, ({3, Y j) === O. 

Lemma 2: For any j, 1 :5 j :5 1 and for any highest 
weight A we have (y j ,/.l) :5 (y j ,A) for each /.l E A (A) • 

Proof: We may write /.l == A - ~8>O C a{3, where c a is 
a nonnegative integer and {3 is a positive root.4 Hence 
(y j' /.l) == (y j' A) - ~a>o c a(Y j' {3) and the result follows by 
using Lemma 1. 

Lemma 3: Let /.l == ~f~lP;>l.j' For any j, 
1 :5 j :5 1, we have 

Proof: By definition,2(a j ,Ak)/(Cl:j>Cl: j ) == ojk,the 
Kroneker delta. 

Consequently, 

3. THE EQUIVALENT CONDITION 

Let 
I 

A == ~ mjAj and 
j~l 

Theorem: A'» A if and only if for each j, 

mj=== 2(Yj,A) == t c,(j>m. (CI:;.Cl: j ) 

(y j , 'Y j ) j ~1' , (y j , Y j ) 

The computational condition for each type of complex 
simple Lie algebra is summarized in Table I. 

Proof of theorem: Let /.l E A(A) and write /.l == 
~j=lPjAj • 

We must show that for all /.l E A(A), for all j, 
1 :5 j :5 1 we have mj + Pi === 0 or equivalently mj === - Pj • 
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TABLE I. Equivalent condition in computational form. 

Compact 
Type form 

A, SU(l + 1) 

B, SO(21 + 1) 

Dynkin 
diagram 

0-0 ... • ··-0 
1 2 , 
0-0 ... - .·0--)0 
1 2 ,-1 , 

Yj 

"'1 + 2("'2 + ... + ",,),j = 1, ... , I - 1 
"'1 + .•. + "'"j = I 

Condition 

m; ~ m1 + 2(m2 + ... + m'-l) + m, 

m; ~ 2(m1 + '" + 1i!'_1) + Ii!, 

1452 

C, Sp(2l) 0-0- ••• o~o 
1 2 ,-1 , 01 + 2("'2 + ... + ""-1) + o"j = 1, ... ,1- 1 

2("'1 + ... + a'_1) + "', ,j = 1 

mj ~ m1 + 2(,,'2 + ... 111, ) 

lIzj ~ m 1 + . .. + nZI 

'-2 ,-1 
D/ SO(21) 0-0_···0_0 

I 
0/ 

1 2 3 4 ,-1 
E, 0-0_0_0' •• 0 1 = 6, a1 + 2"'3 + 3a3 + 2a4 + as + 2a6 1 = 6, mj ~ m1 + 2"'2 + 3m3 + 2m4 + "'s + 2m!; 

0, 
1 = 7, 2"'1 + 3"'2 + 4"'3 + 3"'4 + 2",s + "'6 + 2<l.r 1 = 7,m; ~ 2m1 + 3m2 + 4m3 + 3nt4 + 2ms + "'6+ 2m7 

1= 8,2a1 + 4"'2 + 6a3 + 5"'4 + 4",s + 3a6 + 2"'7 + 3",s 1= 8,,,,; ~ 2m1 + 4m2 + 6m3 + 5"'4 + 4ms + 3m6 + 2"'7 

+ 3ms 

F4 0-0--)0-0 
1 2 3 4 

G2 0-;.0 
1 2 

2"'1 + 3"'2 + 4"'3 + 2"'4,j = 1,2 

a 1 + 2"'2 + 3"'3 + 2"'l,j = 3,4 

2"'1 + 3a2 ,j = 1 

a1 + 2a2,j = 2 

Now Pj = 2(aj , Jl)/(aj , aj ). Also A(A) is invariant under 
the action of the Weyl group. Furthermore, since 
(')I j , ')I;) = (a;, a;), there is an element of the Weyl group, 
w, such that w(- aj ) = ')I j' 

Using these facts we may write for each j 

{-Pj I Jl E A(A)} 

Finally, for each j, mj ~ - Pj for all Jl E A(A) is eqUiva­
lent to 

m'. ~ max {-p.} 
J IlEA(A) J 
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2(')Ij ,A) 

(')Ij ,')I j ) 

mj ~ 2m1 + 3,,'2 + 2m3 + m4 

mj ~ 2m1 + 4m2 + 3m3 + 2m4 

m'l ~ 2m1 + "'2 

m'2 ~ 3m1 + 2m2 

The last equality was found by using Lemma 2. 

*This work was partially supported by the Air Force Office of 
Scientific Research, Air Force Systems Command, United States Air 
Force, under AFOSR Grant No. 71-2060. 
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Gravitational perturbations of a Kerr black hole are analyzed using the Newman-Penrose formalism. 
Teukolsky has obtained decoupled wave equations for the perturbed Weyl tensor components lJio and 
1Ji •. In this paper we prove that for well-behaved perturbations lJio and 1Ji. uniquely determine each 
other, i.e., lJio = 0 if and only if 1Ji. = O. Then we solve the Kerr perturbation equations with 
lJio = 1Ji. = 0 and show that the only well-behaved solutions are the trivial perturbations to other 
Kerr solutions via an infinitesmal change in the mass and angular momentum parameters. These 
results prove' that either of the quantities lJio or 1Ji. alone uniquely specifies the nontrivial part of a 
gravitational perturbation of a Kerr black hole. Consequences of this result are discussed. 

1. INTRODUCTION 
It is well established that sufficiently massive stars 

cannot support themselves after they have exhausted 
their thermonuclear fuel and must undergo catastrophic 
gravitational collapse. From the dynamical analysis of 
Price1 and others and from the black hole uniqueness 
theorems of Israel,2 Carter,3 and Hawking4 (see also 
Wald5 ), there is now considerable theoretical evidence 
that-at least for small deviations from spherical sym­
metry and very likely in all cases-when complete gravi­
tational collapse does occur, the final state will be a 
Kerr black hole. Thus, there has been a great deal of 
interest in the properties of Kerr black holes and the 
astrophysical effects they might produce. 

Although important upper limits on energy extraction 
from black holes have been derived by Hawking6 using 
the exact field equations, one must resort to perturbation 
theory to obtain the detailed and quantitative answers to 
the questions of black hole astrophysics. For a non­
rotating, Schwarzschild black hole, the standard metric 
perturbation approach has proved very successful. 7 

However, for a rotating, Kerr black hole-where energy 
extraction mechanisms8 and other interesting phenomena 
become pOSSible-the metric perturbation approach 
yields a complicated system of coupled partial differen­
tial equations. As yet no significant progress has been 
made with these equations except in the stationary, axi­
symmetric case where the uniqueness of well-behaved 
gravitational3 and electromagnetic9 perturbations has 
been proven. A variational principle approach, which 
may prove useful for a number of problems, has been 
developed by Chandrasekhar and Friedman.lO However, 
this approach applies only to stationary or to axisym­
metric perturbations. 

On the other hand, the Newman-Penrose ll (NP) 
formalism has been extremely successful for treating 
perturbations of a rotating black hole. One reason why 
this is so (although perhaps not the only reason) can be 
understood as follOWS: One of the keys to a successful 
perturbation analysis is to choose to work with variables 
such that as many quantities vanish in zeroth order as is 
pOSSible, When this is done, the perturbation equations, 
in general, will simplify and will be more likely to de­
couple. In addition, the perturbation quantities will be 
more likely to be gauge invariant (and hence more phYSi­
cally meaningful). The NP formalism satisfies this 
criterion beautifully for the Kerr metric in that of the 
five basic quantities describing the gravitational field 
(namely, the components 1/10,1/11,1/12,1/13,1/14 of the Weyl 
tensor with respect to an appropriately chosen complex 
null tetrad) only one of them (1/12) is nonvanishing. 

USing the NP formalism, Teukolsky12 has obtained de­
coupled partial differential equations for the quantities 
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~ 0 and 1j; 4' (Here and throughout this paper, dots denote 
perturbation quantities.) Furthermore, Teukolsky has 
shown that these equations ::an be solved by separation of 
variables. Thus, the problem of obtaining the perturbation 
quantities ~ 0 or t/1 4 reduces to the very managable task 
of solving ordinary differential equations. Since the 
energy and angular momentum radiated to infinity by 
~ravitational waves can be calculated immediately from 
1/1 4 alone, a large number of important astrophysical 
problems can already be solved. 

However, one important question which remains is 
whether the complete gravitational perturbation can be 
recovered (at least in principle) once one has solved for 
~ 0 or ~ 4' This question is of particular importance for 
the stability analysis of a Kerr black hole Since, although 
one can analyze the modes of !j;o or !j; 4' one must deter­
mine if there are any unstable modes which do not excite 
!j;o or !j;4' 

Since a gravitational perturbation of Kerr should have 
two degrees of freedom and since the complex quantity 
~ 4 contains the full information on the two p.olariz~tions 
of outgoing radiation, one might expect that 1/1 4 (or 1/10) 
alone should completely specify a gravitational pertur­
bation. However, there are two perturbations about 
which neither ~ 0 nor ~ 4 can contain any information. 
These are the trivial perturbations obtained by making 
infinitesimal variations m, Ii of the mass and angular 
momentum p!p'ame.ters of the Kerr solution. (It is easy 
to show that 1/10 = 1/14 = 0 for these perturbations.) 
Nevertheless, the following result in the electromagnetic 
cas~ encourages one to conjecture that either one of!j;o 
or 1/14 may uniquely determine the complete gravitational 
perturbation of a Kerr black hole up to the trivial Kerr 
perturbations: As Teukolsky12 has pointed out, using the 
NP form of Maxwell's equationsl3,it is nO.t difficult to 
show that either of the quan.tities ¢.O and <P2-which are 
analogous, respectively, to 1/10 and 1/14-uniquely determines 
an electromagnetic perturbation of Kerr up to the per­
turbation which corresponds to adding charge (or mag­
netic monopole moment) to the black hole. 

II} this paper we prove that either of the quantities 1/10 
or 1/1 4 does indeed uniquely specify a well-behaved 
gravitational perturbation of a Kerr black hole up to the 
trivial rh, a perturbations. By "well-behaved" we mean 
that at some initial "time" (i.e., on an initial spacelike 
hypersurface which intersects the future event horizon) 
the perturbation (1) vanishes sufficiently rapidly at 
infinity, (2) has no angular singularities, and (3) is 
regular on the future event horizon. ~pecifically, pro­
perty (3) requires that t,,21/1 0 and t,,-21/14 (where t" = r2 -
2mr + a2 ) be regular functions of coordinates which 
cover the Kerr horizon in a nonsingular fashion; in par­
ticular, we require that these functions (and their deri-
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vatives) remain bounded as one approaches the future 
horizon. (The quantities il2tito and il-2tit4 are gauge in­
variant components of the perturbed Weyl tensor with 
respect to a tetrad which is nonsingular on the future 
horizon of Kerr.) 

By taking the'difference of two solutions with the same 
tito (~r ~4)' it is easily seen that the statement that ~o 
(or 1/1 4 ) uniquely spec ifies a perturbation is equivalent to 
showing that there are np nontrivi¥, well-behaved per­
turbations of Kerr with 1/10 = 0 or 1/1 4 = O. The first step 
of th~ proof of this result consists of showil}-g that 1/10 
and 1/14. uniquely determine each other, i.e., 1/1 0 = 0 im­
plies 1/14 = 0 and vice versa. We prove this by.solving 
t,he NP equations for the radial dependence of 1/14 when 
1/10 = 0 and showing that there are no well-behaved solu­
tions compatible both with this radial dependence and 
with Teukolsky's equation,12 (The converse result that 
tit 4 = 0 implies ~ 0 = 0 then follows immediately by inter­
changing tqe tetraq vectors 11-' and nl-'.) An independent 
proof that 1/1 0 and 1/1 4 uniquely determine each other has 
been obtained by Press and Teukolsky .14 

. The pr<?blem of determining the radial dependence of 
1/14 when 1/10 = 0 is mathematically very closely related 
to the problem of determining the radial dependence of 
the NP variables for type II algebraically special exact 
solutions. (A Kerr perturbation with tit 0 = 0 is, in effect, 
an algebraically special perturbation.) This problem is 
of interest in itself since it is the first step toward the 
explicit determination of all type II exact solutions. 
Since in any case we need to carry through the analysis 
for its applications to Kerr perturbations, in Sec. 2 we 
derive the radial dependence of all the NP variables for 
type II exact solutions. The derivation relies heavily on 
the methods and results of Kinnersley's15 analysis of 
type D exact solutions. 

In Sec. 3 we discuss the general question of transcrib­
ing results on exact solutions into results on perturba­
tions. In Sec. 4 we use the results of Sec, 2 to show that 
for well-be~aved Kerr perturbations we have 1/10 = 0 if 
¥ld on"ly if 1/1 4 = O. The Kerr perturbation equations with 
1/1 0 = 1/1 4 = 0 are then explicitly solved in Sec. 5 by 
paralleling Kinnersley's15 analys~s of type D exact solu­
tions. (A Kerr perturbation with 1/1 0 = 1/14 = 0 is, in 
effect, a type D perturbation.) It is found that after all 
tetrad and coordinate freedom is used up, there are pre­
cisely four linearly inqepenqent solutions of the pertur­
bation equations when 1/1 0 = 1/14 = O. Two are the trivial 
rh, a Kerr perturbations, one is a perturbation toward 
the Kerr-NUT solution,16 and the last is a perturbation 
toward Kinnersley's "rotating C metric."15 These last 
two perturbations are physically unacceptable,i.e., they 
would be excluded by the boundary conditions one would 
impose in any physical problem. Thus, the analysis of 
Secs .. 4 and.5 yields the result that either of the quanti­
ties 1/1 0 or 1/1 4 fully specifies the nontrivial part of a Kerr 
perturbation. Some consequences of this result are dis­
cussed in Sec. 6. 

2. RADIAL DEPENDENCE OF TYPE II SOLUTIONS 

In this section we shall derive the radial dependence 
of all type II algebraically special solutions using the 
Newman-Penrose (NP) formalism. The results of this 
analysis will be applied to Kerr perturbations in Sec. 4. 
Using a different tetrad chOice, Talbot1 7 has indepen­
dently derived the radial dependence of the NP variables 
for algebraically special solutions. Hence, the results 
of this section could also be obtained from Talbot's 
results by making a null rotation of his tetrad. However, 
for completeness and because in Secs. 4 and 5 we will 
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need the definitions of the quantities introduced here, 
we give the full derivation of the radial dependence of 
the NP variables below. 

For the benefit of the reader who is totally unfamiliar 
with the NP approach, we make the following brief re­
marks, referring the reader to the original NP paperll 
for a more adequate discussion (including the spinor 
motivation of the approach). In the NP formalism, one 
chooses a tetrad at each point in the space-time consist­
ing of two real null vectors, 11-' and nl-', a complex linear 
combination of spacelike vectors, m 1-', and its complex 
conjugate mI-'. The tetrad vectors are chosen so that 
1l-'nl-' = - m ml-' = 1 (where the metric Signature is + -
- -) and all other dot products of the tetrad vectors 
vanish. The spin coefficients are defined in terms of the 
components with respect to the tetrad of the covariant 
derivatives of the tetrad vectors. Rather than work with 
the components of the metric tensor as the basic varia­
bles, in the NP approach one chooses to work with the . 
spin coefficients and the tetrad components of the Weyl 
and Ricci tensors. In the Appendix, we give the precise 
definitions of the spin coefficients and Weyl tensor com­
ponents which are used in the NP formalism and we des­
cribe the allowed tetrad transformations which preserve 
the above orthogonality relations. 

At each point in a space-time there are four principal 
null directions of the Weyl tensor (solutions of 
l[I-'Ca.)BY[61v]lB1Y = 0). If two or more of these principal 
null directions COincide everywhere, the space-time is 
called algebraically special. If precisely two principal 
null directions coincide everywhere, the space-time is 
said to be of type II. If we choose the tetrad vector 11-' to 
point along the direction of the double prinCipal null 
vector of a type II space-time, the Weyl tensor com­
ponents 1/1 0 and 1/1 1 vanish. By the Goldberg-Sachs 
theoremll we also obtain K = a = O. Under a null rota­
tion of the tetrad with 11-' fixed, (see Appendix) 1/1 3 trans­
forms as 

(2.1) 

Since 1/12 ;.0 0 or the space-time would be more special 
than type II, we can perform a null rotation with 11' fixed 
to set 1/1 3 = O. In addition, we can make E = ° by a tetrad 
rotation, and we can choose the coordinate x 2 = r so that 
11' = a/or. Then, the NP tetrad takes the form, 

11-' = (0, 1, 0,0), (2.2) 

(2.3) 

(2.4) 

Since K = rJ = E = 0, the NP commutation relations for 
the derivative operators D == 1l-'a/axl-' = a/or, il == nl'a/axl', 
li == ml'a/axl-', and il == ml-'a/axl' become 

ilD - Dil = (y + y)D - (7 + iT)il - (1" + IT)li, (2.5) 

liD - Dli = (a + (3 - 1i)D - pO, (2.6) 

llil - illi = - vD + (7 - ii - (3)il + ~O + (Jj - y + y)O, 
(2.7) 

00 - oil = ({i. - IJ.)D + (p - p)il - (ii - (3)il - (~- a)li. 
(2.8) 

In terms of the tetrad components, these relations 
yield 

DU = (7' + IT)w + (7 + iT)w - (y + '9), (2.9) 
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DXi = (:r + l7)~i + (T + if)~i, 

Dw = pw + (if - a - (3), 

(2.10) 

(2.11) 

(2.12) 

/jU - t.w = - ii + (T - a - (3)U + Aw + (JJ. - Y + ji)w, 
(2.13) 

OXi - t.~i = (T - Ii - (3)Xi + ~~i + (JJ. - y + yW, (2.14) 

Ow - Ow = (fJ. - JJ.) + (p - p)U - (a - (3)ZiJ - (~ - a)w, 
(2.15) 

The vacuum NP equations give 

Dp = p2, 

D{3 = p{3, 

Da = p(a + 17), 

DT = p(7 + iT), 

Dy = (T + if)a + (1' + 17){3 + 717 + 1/1 2' 

DJJ. - 017 = plJ. + 17ft - l7(a - (3) + 1/12' 

Op = p(a + i3) + (p - p)T, 

OT = p'i.. + 7(T + (3 - a), 

(2. 16) 

(2. 17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

aa - 0{3 = JJ.p + aa + (3~ - 2a{3 + y(p - p) -1/12' (2.25) 

DII - t.17 = (17 + 'f)1J. + (iT + T)'\ + (y - y)l7, (2.26) 

t.a - ~y = pll - (T + (3» .. + (y - fJ.)a + (j3 - r)y, (2.27) 

t.{3 - oy = - Y(T - a - (3) - JJ.T + (3(y - ji - IJ.) - aX, 
(2.28) 

Oil - t.1J. = 1J.2 + )..X + /1(1' + ji) - iil7 + 11(7 - 3{3 - a), 
(2.29) 

D).. - 017 = p).. + 17(17 + a - ~), (2.30) 

t.p - g7 = - pfJ. + (~ - a - 1')7 + (I' + y)p -1/12' (2.32) 

A).. - gil = - (IJ. + il» .. - (31' - y» .. -1/14 + (3a + ~ + 17 - "11. 
(2.33) 

The Bianchi identities yield 

D1/I2 = 3p 1/12' 

61/12 = - 3171/12' 

01/12 = 371/12' 

t.1/I2 = - 3/11/12' 

D 1/14 = P1/l4 - 3)..1/12' 

01/14 = (T - 4(3)1/14 - 3111/12' 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

The key point to notice is that with our choice of tetrad 
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type II case. Thus, in the type II case we can immediately 
obtain the radial dependence of all the NP variables 
except those which vanish in the type D case, namely II, 
'\, and 1/14' For completeness and because later we will 
need the definitions of the variables introduced here, we 
outline Kinnersley's derivation of the radial dependence 
below. 

The case p = 0 is not of interest here and will not be 
considered (although the radial dependence of the NP 
variables can be found without difficulty in that case). If 
p ;.0 0, integration of Eq. (2.17) gives 

p = - 1/(r + ipO), (2.40) 

where the superscript "0" indicates a "constant" of 
integration of an equation involving radial derivatives, 
i.e., a quantity which is independent of r. By re-adjusting 
r is necessary (keeping ll' = alar) we make pO real. 
Application of the commutator (3D - DO) to p yields 

D~p - 3p6p = p2(17 - a - ~) (2.41) 

with the general solution [using Eqs. (2.17)-(2.19)] 

Op = p(a + ~) - 2p3rO. (2.42) 

Application of the commutator (OD - D{j) to 1/12 yields 

Dl7 = p(a + ~) - (jp = 2p31'O (2.43) 

or 

(2.44) 

Integration of Eqs. (2. 9)-(2.12), (2.18)-(2. 21), and 
(2. 34) then yields 

(3 = p{30, 

7 = Pl10 + PPTo - il'O, 

w = pwo + aO + (30 - ft0/p, 

y = yO + p(7]0ao - 1'01fO) + p(fj0{30 - 7017 0) - r1T0iTo 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2. 51) 

+ p2(il/l~ + 1'07]0) + PP(70a O + 1'0(30) + p2pT01'O, 
(2.52) 

U = UO - r('Y0 + yO + 7)0 170 + fj0ft0) + r 2170ifo 

+ p[:rO(a O + (30) - :r0 7]0 + 7]0Wo - il/lg] - pr°'jfo/p 

+ p[TO(a O + ~O) - TOfjO + Tjow o- iii/g] - pTOl7O/p 

+ pp[TOwO + TOWO - TOTO]. (2.53) 

Next we apply the commutator t.D - Dt. to P and get 

Dap - 2pt.p = - p2(y + ji) + (7 + 'if)gp + (1' + l7)Op 
(2. 54) 

which, using Eqs. (2. 23), (2. 42), (2. 44), (2.47), and (2.52) 
can be integrated to yield 

all of the equations used by Kinnersley15 to determine t.p = - p2Mo + p27]0(aO + ~O) + p01j0'jfO 
the radial dependence of the NP variables for the case of I 

type D solutions also appear without modification in the + p(yO + yO + 7]
0

17°) - p3(21/1~ + 1'0'1)0) 
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+ pp[ijO(a O + {30) - T01TO + rOwO - 1)0ijO] 

- p2p[ti71~ + ~1)0 - TO(a O + ~O) - rO«i0 + {30)] 

- p3PTO:r0 + r2p21TOiTO. (2.55) 

Finally, we apply the commutator t::.D - Dt::. to 1/12 and 
get 

D/l = - t::.p + p(y + y) + 1T1r - TT 

which can be integrated to yield 

/l = /lo + p(MO - rOiO) + PT0 1TO 

+ p2(t1/l20 + r 01)0) + tPP1/l~ + p2 pTOrO 

- r2p1TOwO. 

(2.56) 

(2.57) 

This completes Kinnersley's derivation of the radial 
dependence of all the NP variables except 1/14'71., and v. 
Substituting the above results into Eq. (2. 30), we obtain 

DX = pX + KOp + LOp3, 

where 

Integration of Eq. (2. 58) yields, 

X = xOp - XC + LOp2. 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

Substituting this result and Eq. (2. 51) into Eq. (2.38), 
we get 

(2.62) 

which can be integrated to yield 

Equation (2.63) is the key result of this section. It 
shows that P-41jI4 is a cubic polynomial in r. In Sec. 4 we 
will use the linearized version of this result to prove 
tpat l/; 4 = 0 for well-behaved Kerr perturbations with 
1/10 = O. 

Finally, the radial dependence of v can be determined, 
e.g., from Eq. (2. 39), now that the radial dependence of 
all the other NP variables is known. The next step in a 
systematic analysis of type n solutions is to substitute 
the radial dependences determined above into all the re­
maining NP equations. One then equates coefficients of 
the various powers of l/r, thus eliminating r and reducing 
the problem to solVing for functions of three variables 
only. Using a different tetrad chOice, Talbot17 has pro­
ceeded with this analysis. 

3. LINEARIZATION OF RESULTS ON EXACT 
EQUATIONS 

In the next two sections, we shall see that with an 
appropriate tetrad chOice the Kerr perturbation equa­
tions with tj; 0 = 0 and with t/; ° = t/; 4 = 0 are precisely the 
linearizations off Kerr of the exact NP equations for 
type II and type D solutions, respectively. We shall then 
apply the results of Sec. 2 and much of Kinnersley's 
analysis15 to Kerr perturbations. The purpose of this 
section is to warn the reader that such a carrying over 
of results on exact equations to results on perturbations 
need not always be possible. This is so because there 
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are a number of operations which can be performed on 
exact equations which cannot be paralleled in the linear­
ized case. Most notorious among these operations is the 
taking of square roots or other fractional powers: The 
exact equation 1 2 = 0 implies 1 = 0, but if 1 vanishes in 
zeroth order the linearized equation corresponding to 
12 = 0 is merely 0 = 0, which does not imply j = O. 
Thus, in applying the results of any analysis on exact 
equations to perturbations, one must carefully check that 
all the corresponding steps can be performed with the 
linearized equations; one cannot automatically linearize 
the final conclusions. 

HaWking's theorem4 provides an interesting and rele­
vant illustration of the difficulties one can encounter in 
attempting to apply results from exact theory to pertur­
bations. Hawking has proven that a stationary, rotating 
black hole must be axisymmetric. One might expect that 
this result would exclude the existence of well-behaved, 
stationary, nonaxisymmetric perturbations of Kerr. 
(Such perturbations are of interest since they would 
indicate a neutral mode of oscillation and would be of 
strong evidence for the instability of Kerr black holes.) 
However, Hawking's theorem does not carryover to the 
linearized case. Early in his argument Hawking uses the 
condition p = 0 and the equation 

Dp = p2 + aa + (E + €)p (3.1) 

to conclude that a = 0 for the generators of the horizon. 
But for Kerr perturbations, Eq. (3.1) yields no informa­
tion on a to first order. Thus one cannot conclude that 
a = 0 and the attempted proof breaks down. However, as 
a consequence of the results of Secs. 4 and 5 we will 
prove in Sec. 6 that, in fact, there exist no well-behaved 
stationary, nonaxisymmetric perturbations of Kerr. 

4. KERR PERTURBATIONS WITH ~o = 0 
We now turn our attention to perturbations of a Kerr 

black hole. The notation throughout th.e rest of the paper 
is as follows: Dotted quantities (e.g.,1/I2) will denote per­
turbations of Kerr; undotted quantities (e.g.,1/I2) will de­
note the zeroth order Kerr values. In zeroth order, we 
use Kinnersley's tetrad.15 Then we have 1/1 0 = 1/1 1 = 1/1 3 = 
1/1 4 = K = a = X = v = E = O. With a suitable choice of 
coordinates, given in terms of Kerr coordinates by Xl = 
U, x2 = r, x 3 = X = cose, x4 = cp, the Kerr values of the 
"constants" of integration introduced in Sec. 2 become 

pO = - ax, 

TO = - ia(l - x2)1/2/.f2, 

MO = - UO = lt2' 

1/1~ = m, 

{30 = - a O = - (J"2/4)x/(1 - x2)1/2, 

XOi = lin, 

~01 = _ iax2(1 - x2t1/2/.f2, 

~03 = (1- X 2)1/2/·l2, 

~04 = i..f2/(l - X2)1/2, 

1T 0 = wO = 1)0 = yO = /lo = 0 

(and, of course, XO = XC = LO = 1/1~ = 0). 

(4.1a) 

(4.1b) 

(4.1c) 

(4.1d) 

(4.1e) 

( 4.lf) 

(4.1g) 

(4.1h) 

(4. li) 

(4. 1j) 
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From the behavior of the Weyl tensor components 
under tetrad transformations, it .may be. easily verified 
that the perturbation quantities 1/10 and 1/14 are gauge in­
variant, i.e., their values are unaffected to first order by 
all allowed infinitesimal tetrad transformations and all 
infinitesimal coordinate transformations. We.shall prove 
belo~ that for well-behaved perturbations, if 1/10 is given, 
then 1/14 is uniquely determined. By taking the dijference 
between two perturbations with the same given.l/lo, this 
is easily. seen to be equivalent to proving that 1/10 = 0 
implies 1/1 A = O. Once thi~ is proven, t;he converse re­
sult that 1/14 = 0 implies 1/10 = 0 (i.e.,1/14 uniquely deter­
mines 1/10) follows immediately by interchanging the 
tetrad vectors lli and nil. 

Consider a Kerr perturbation with ~o = O. By an in­
finitesim!ll null rotation of the tetrad with III fixed, we 
may set 1/1 3 = 0 [see Eq. (2.1)]. Similarly, py an infini­
tesimal null rotation with nil fixed, we set 0/1 = O. 
(Neither of these transformations affects 1/10 = 0, since 
1/1 0 is gaug.e invariant). The linearized Bianchi identities 
involving 1/10 and 1/1 1 then immediately yield ic = a = 0 
(i.e., we obtain the linearized version of the Goldberg­
Sachs theoremll). By an infinitesimal tetrad rotation 
we can set E = O. H we choose the coordinate r for the 
perturbed space-time to maintain lli = alar, 'o/e find that 
the Kerr perturbation equations frYr the case 1/10 = 0 are 
precisely the linearizations off Kerr of the NP equations 
frYr type II exact solutions given in Sec. 2. 

It may be verified that all the integrations and alge­
braic manipulations performed with the exact equations 
in Sec. 2 can be performed with equal validity for the 
linearized equations. Thus, by a precise paralleling of 
~teps, we find that when ~o = 0, the radial dependence of 
1/14 is given by the linearized version of Eq. (2. 63), 

~ 4 = ~~p + 3KO I/IRp2 - ~~ 0 l/I~p3 - Lo l/I~p4. (4.2) 

Thu!', p-4 ~ 4 is a cubic polynomial in r. On the other 
hand, 1/14 must also satisfy Teukolsky's equation.1 2 [This 
equation is derived by solving the linearized version of 
Eqs. (2. 38) and (2.39) for .x and -V in terms of ~ 4 and sub­
stituting the result into the linearized version of Eq. 
(2.33). Since Eq. (2. 33) was not used in the analysis of 
Sec. II, Teukolsky's equation can be expected to yield new 
information on 1/14 .] Teukolsky has shown that in Kerr co­
ordinates the general solution of his equation takes the 
form 

p-4~4 = J dwL;Rlm(r, w)Slm(8, w)e--iwueim'l', (4.3) 
lim 

where the Szm are spin weighted spheroidal harmonics12 

and Rim satisfies Teukolsky's radial equation. In our 
case,R

Im 
must be a cubic polynomial. However, Teukol­

sky (private communication) has found that when one 
substitutes a cubic polynomial into the radial equation 
one gets four homogeneous, linear equations for the four 
coefficients of the polynomial. Hence, the necessary and 
sufficient condition for the existence of a cubic poly­
nomial solution of Teukolsky's equation is that the deter­
minant of this linear system vanish. Explicitly, this 
condition is 

0= det = A2(A- 2)2 - 12A(A - 2)rw - 8A2rw 

+ 36(r2 + 4M2)w 2 - 96Aa2w2, (4.4) 

where 

r = 2wa2 - 2am, (4.5) 

A= 2amw - a2w2 - A, (4.6) 
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and A = A(l, m, w) is the eigenvalue associated with the 
spin weighted spheroidal harmonic SIm(8, w). In the case 
of a Schwarzschild black hole (a = 0), we have A = 
(l + 2)(l- 1) (independent of w) and the determinant, Eq. 
(4.4), reduces to a quadratic polynomial in w. It vanishes 
when 

w = ± i(l + 2)(l + 1)l(l - 1)/12M. (4.7) 

This agrees with the time dependence of the algebrai­
cally special perturbations of Schwarzschild investi­
gated18 by Kinnersley and Couch and Newman. In the 
general Kerr case (a ;0" 0), Eq. (4. 4) is considerably less 
simple to solve, owing mainly to the fact that the value of 
A depends on w and must be determined by solving the 
angular eigenfunction equation. The important point to 
note, however, is that solutions can occur only for special 
values of w. In particular, when w = 0 we again have A = 
(l + 2)(l- 1) and Eq. (4. 4) is not satisfied, i.e., there are 
no st~tionary, algebraically special perturbations of Kerr 
with 1/14 ;0" O. Since the determinant, Eq. (4. 4), is an 
analytic function of w, it follows that solutions of Eq. (4.4) 
can occur only at isolated values of w (because if the 
determinant had an accumulation point of zeros it would 
have to vanish everywhere and this would contradict the 
fact that it doesn't vanish at w = 0). It appears likely 
that there are no solutions of Eq. (4. 4) for real w. In 
that case, we see from Eq. (4. 3) (reCalling that Rim has 
cubic polynomial dependence on r) that on an initial 
spacelike slice which intersects the future horizon, the 
imaginary part of w will cause ~ 4 to blow up exponenti­
ally either at the horizon (where u ~ + 00) or at spacial 
infinity (where u ~ - 00). Hence, these perturbations will 
be physically unacceptable. But even if solutions with 
real w occur, each individual w mode is not a physically 
acceptable solution by itself since it does not behave 
properly at the horizon: As can be seen from Eq. (4. 3) 
the re~ part of w will cause ~ 4 to undergo infinite 
oscillation in a finite region as one approaches the future 
horizon (u ~ 00). H solutions over a continuous range of 
w were available, one could cancel the singularities of 
the real w modes by forming wave packets. However, in 
our case w can take on only the discrete values satisfy­
ing Eq. (4. 4). Hence, we conclude that there exist no 
physically acceptable cubic polynomial solutions of Teu­
kolsky's equation. Thus the only physically acceptable 
perturbations with 1/10 = 0 must also satisfy 

~4 = O. (4.8) 

Strictly speaking to draw this conclusion in an entirely 
rigorous fashion one should prove that (for fixed l, m) 
either (1) there exist only a finite number of solutions of 
Eq. (4.4) for w (which is equivalent to showing that solu­
tions do not occur for arbitrarily large w since only 
isolated solutions can occur), or (2) in the unlikely event 
that there are infinitely many solutions, that the pertur­
bations corresponding to these solutions cannot be added 
in such a way as to exactly cancel the bad behavior of 
each of the individual solutions on the horizon. This last 
step !tas not been caz:ried out, but an independent proof 
that 1/1 0 = 0 implies 1/14 = 0 has been obtained by Press 
and Teukolsky.1 4 

5. KERR PERTURBATIONS WITH ~ 0 = ~ 4 = 0 

In this section we shall prove that the only wel!­
qehaved perturbations of a Kerr black hole with 1/10 = 
1/14 = 0 are the trivial perturbations to other Kerr solu­
tions via an infinitesimal change in the mass and angular 
momentum parameters. Together with the results of 
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Sec. 4, this shows that a perturbation of a Kerr black 
hole is uniquely specified up the trivial rh, a p'erturba­
tions by giving either of the quantities tj;o or ~4 alone. 

ConSider a Kerr pertu:r;batiop with tj;o = 1/;4 = O. As in 
~ec. 4 .above we may set 1/11 = 1/1 3 = 0 (without affecting 
1/1 ° = 1/14 = 0) by infinitesimal null rotations of the tetrad. 
Then we also obtain a = K = Ii = ~ = O. Again, by an in­
finitesimal tetrad rotation we set E = 0 and we choose the 
coordinate r for the perturbed space-time so as to main­
tain 11' = a/ar. The Kerr perturbation equations then pre­
cisely reduce to the equations one gets by linearizing the 
NP equations jor exact type D solutions analyzed by 
Kinners1 ey15 about Kerr background. 

As in Sec. 4, we may parallel Kinnersley'sl5 deriva­
tion of the radial dependence of the NP variables to get 
the linearized versions of the equations given in Sec. 2 
above. The next step in Kinnersley's analysis is the 
substitution of the radial dependence of the NP variables 
in the remaining NP equations. In the exact case, this 
yields equations of the form 

(5.1) 

where a~ is independent of r, which implies 

a~= O. (5.2) 

For the case of Kerr perturbations, the analogous pro­
cedure leads to the linearized version of Eq. (5. 1), i.e., 

(5.3) 

which similarly implies 

a~ = O. (5.4) 

Thus, by paralleling Kinnersley's analysis, we obtain 
the linearized versions of all of Kinnersley's equations 
given in Sec. roB of his paper. Furthermore, as in the 
exact case, we still have the freedom to make infinitesimal 
tetrad rotations 'which are independent of r. (In addition, 
the coordinates x 1,x3 , and x4 have yet to be specified for 
the perturbed space-time.) Following Kinnersley, we 
make an infinitesimal tetrad rotation ll' --7 (1 + AO)-111' , 
nl' --7 (1 + AO)nl' to keep 1/I~iH a constant to first order. 
As in the case of exact type D solutions, tl1is tetrad 
choice can be shown to imply the following relations: 

~o + ~o = 2ip07¥0, 

yO + yO + (1.0 = O. 

(5.5a) 

(5.5b) 

Below, 'Fe giye the NP Kerr perturbation equations for 
the case 1/10 = 1/14 = O. These equations are obtained by 
linearizing the equations of Sec. IUB of Kinnersley's 
paper about the Kerr background, and making the simpli­
fications Eq. (5. 5), given by our tetrad chOice, and some 
simplifications resulting from the simple form of the 
zeroth order Kerr solution, Eq. (4.1): 

wO = - 2(pO)2~0 

'lj0 = 2ipO~0, 

[1.0 = /L ° 
MO - ito = 2ipO (1.0 + 47'io, 

r0 1fo + 7'0~0 = 0, 
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(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(jo = - t(MO + MO), 

rO iJ,0 = ipoio, 

~Oip.~ + ~Oip.~ = - ifo + 2i(pO)2~0, 

XOipO. + XOipO. = 0, 
.t ,t 

~0iJ;.20. = 6ip01/l0~0 ," 2 , 

~Oi~O . = 6ipO 1/I0iTO 2.. 2 , 

XOi~20. = 0, .' 
~ OiiT.~ = - (1.0 + 1fO«(i ° - f30), 

~OiiT.~ = 1f0(~0 - a O), 

~OirO. + ~OifQ = - i O(3a O + f30) - rO(3~0 + ilo) , z. " fJ , 
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(5.11) 

(5. 12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

tOirO. + ~OifO. = - iO(a O + 3~0) - rO(&O + 3~0) - ip'O 
.' ,i 

+ ~~20 - ~~) - 4irOp0'"0 - 2ipOMO, (5.21) 

~OiaQ + ~Oi&Q - iOif3Q - ~Oi~Q = 2tiO(~0 - aO) + 2f30(~0- &0) 
.i .i .' ,I. tJ fJ 

+ 1110 + 2ipO(yO + (;.0 + a0.#o + f30'"0), (5.22) 

~Oi(1.?i = iTO, 

~OiMO. = 2ip0'lf0 + (1J.t.0 + 21j/0)'lf0 - 27'0JiO ,t 2 2 , 

XOif3Q + XOi~O. - ~OiyQ = - f3 0«(;.0 - yO + 210) 
.' .1 It 

XOi(;.?i = 0, 

XOiM-0. = 0, .> 

tOi' ° - .!O .. Il.i-'/T, 

~OiMO. = 4ipO~0 + 31i10~0, .> 2 

+ (i0yO + ~ifo, 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

iOi~O.i - ~0i€0.i - €Oi~O.i - ~OiiO.i = - ~Oj(2~0 + 2ip0'"0) 
I t,t • t ,1. 

- 2~0€Oj + ~Oj(2~0 - 2ipO~0) 

+ 2f30tOj - 2ipOXOj - 21XOjpO. (5.34) 

At this stage in the analysis of exact type D solutions, 
Kinnersley resolves the solutions into various cases 
according to whether or not '/To = O. Unfortunately, we 
cannot parallel his analysis exactly here because we can 
neither assume that ,"0 = 0 nor can we follow his steps 
for the case ,"0 '" 0 (since, in effect, he divides by '/To and 
takes square roots). However, we can still proceed to 
splve the equations, following closely the methods used 
in Kinnersley's Ph.D. thesis.15 

Reality of UO,XOi, and pO is guaranteed by their defini­
tions. The quantity (1.0 is real by Eq. (5. 8), and using the 
zeroth order Kerr values, Eq. (4.1), we find that Eq. 
(5.10) shows that 1f0 is real. Equations (5. 18) and (5.19) 
then show that 
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(5.35) 

(This is consistent with Eq. (5. 12) since 4/30 = -
ipO /To in zeroth order.) Equations (5.9) and (5.11) imply 

(5.36) 

Following Kinnersley, 15 we define the quantities bO, (0, 
and rh 0 by the equations 

~O = 60 + ipOirO, 

fO = 2(pO)2irO + ito, 

(5.37) 

(5.38) 

~~ = rho + i(- 2poUo - 2pOUO + 4b O(- iTO) + 4/30(0). 
(5.39) 

For zeroth order Kerr, we write bO = /30, to = - iTO, 

andmO = ltt~. Then bO,tO andmo are real. We.now make 
use of the infinitesimal tetrad fl:eedom m I' ~ ei e m I' (where 
8 is independent of r) to make to real, i.e., Re(fO) = 
2(pO)2,"0. (This can be done since Im(TO) '" 0 in zeroth 
order.) Using this tetrad choice, the real part of Eq. 
(5.26) together with Eq. (5. 25) and reality of 'lio shows 
that yO is real. Then, from Eqs. (5. 5b) and (5.35) we 
obtain, 

yO = 2b0,"0. (5.40) 

Next, adding Eq. (5. 20) to the complex conjugate of 
Eq. (5. 21) and using Eq. (5. 5a), the tetrad condition 
Re( fO) = 2(pO)2,"0 and the definition of 60, Eq. (5. 37), we 
obtain, 

Using Eqs. (5.18), (5.35), (5. 36) and the known zeroth 
order Kerr values, the real part of this equation yields 
the result that 60 is real. Finally, the imaginary part of 
Eq. (5. 41) shows that rho is real, where rho is defined by 
Eq. (5. 39). Thus, we now have reduced the prQblem.of 
solving the Kerr per.turbation equations with ltto.= ltt4 = 0 
to task of obtaining ~o;, and the real quantities XOi,pO, 'lio, 
60 , to, (jo, and thO; all the NP variables can be obtained 
immediately by algebraic substitutions once these 
quantities are known. 

We now specify the coordinates x 1,x3, and x4 for the 
perturbed space-time, following closely the choices 
made in Kinnersley's Ph.D. thesis.15 The coordinate 
x 2 = r was previously specified by the condition ll' = 
6H2 and pO real. Since XO; is independent of r, we may 
choose xl so that Xo; = 6il (i.e.,XO = a/ax 1) is maJn­
tained for the perturbed space-time. This yields XOi = 
O. Since pO and pO are independent of r and [by Eq. (5.14)] 
independent of Xl, we may choose the coordinate x 3 = x 
so that the relation 

pO + pO = - (a + a)x + i (5.42) 

holds for the perturbed space-time, where Ii and i are 
constants. (This equation defines x uI? to an infinitesimal 
linear transformation, x ~ x. + Kx + L, to be fixed later.) 
Then Eq. (5. 13) shows that ~03 must be real. 

Aside from the linear freedom in x, we still have the 
infinitesimal coordinate freedom 

Xl ~ xl + j1 (x, x 4), 

x4 ~ x4 + j4(X,X4). 
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Under these transformations, ~01 and ~04 transform 
as follows: . . 

~01 ~ ~01 + ~03 ail + ~04 ail, 
ax ax 1 

(5. 44a) 

~04 ~ i 04 + ~03 a~ + ~04 a
j 4 • 

ax ax4 
(5. 44b) 

Following I\innersl~y,15 we use this coordinate free­
dom to make ~01 and ~04 pure imaginary. 

We now note the following remarkable simplifications: 
Equations (5.17), (5.25), (5. 26),.(5 •• 28),. (5. 30),.and (5.33), 
respectively, show that mO, ,"0, to, bO, UO, and ~Oj are in­
dependent of xl. Equations (5.15) and (5.16), (5. 24) and 
(5.32), (5. 1~), and (5.20), respectively, then show that rho, 
UO, 'lio-, and to are also independent of x4. Thus, all vari­
abl.es are functions of x alone, with the possible exception 
of bO and ~Oi which may also depend on x4. In terms of 
these variables, the equations remaining to be solved 
[namely, Eqs. (5.13), (5.15), (5.18), (5. 20), (5. 22), (5. 24), 
and (5. 34)] become 

~03rh0 = 0 ,x , 

~03tO + ~03io = 2b oio + 2t06o ,x.x , 

2i03bO + 2~03bO = - 8bObO + iTo ,x ,x , 

~03iTO = - 3m0'"0 ,x , 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

Equations (5.45) and (5.48) show that ~03 and bO are 
also functions of x only. The solution of Eq. (5. 46) is 

rhO =rh, (5. 53) 

where rh is a real constant. Using the zeroth order Kerr 
values, Eq. (4.1), the solution of Eq. (5. 47) is found to be 

(5. 54) 

where P is a real constant. Integration of Eq. (5. 50) 
yields 

UO = - 3.f2mpx + B, (5.55) 

where B is a real constant. We use the .final remaining 
infini~esimal tet.rad freedom ll' ~. (1 + A)-lll', nl' ~ 
(1 + A)nl' with A constant to set B = O. The combination 
of Eqs. (5. 45), (5.48), and (5.49) gives 

[(1- x2)1I2i03].xx = .[2uo = - 6mpx 

which implies 

~03 = (1 - x2)-1/2[_ mpx3 + ex + E], 

(5.56) 

(5.57) 

where C and E are constants. We make use of the re­
maining freedom x.~ x + kx + L to s.et C =.E = O. 
Having solved for ~03, the quantities to and bO are then 
obtained immediately from Eqs. (5. 45) and (5.48). 
Finally, integration of Eqs. (5. 51) and (5.52) yields the 
solutions 
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~03i01 = ii1(X 4 } + iiax2 - dx - ~01i03, 

~03i04 = ii4(X4} - ~04i03, 

(5. 58} 

(5. 59} 

where i1 andg 4 are arbitrary real functions .• We nqw use 
the final coordinate freedom, Eq. (5. 43) with!l and!4 
functions of X4 only, to set i 1 = g 4 = O. 

We hav!5 now. solved the Kerr perturbation equations in 
the case 1/1 0 = 1/14 = O. We emphasize that no symmetries 
have been assumed for the solutions and, as yet, we have 
imposed no boundary conditions. 

Having used up every last drop of tetrad and co­
ordinate fr~edo"!, we see that the general perturbation of 
Kerr with ~o = 1/14 = 0 is fully specified by the four param­
eters m, d, l, and p. The perturbations generated by m 
and Ii are easily recognized to be the trivial perturba­
tions to other Kerr solutions, i.e., the perturbations one 
obtains by making infinitesimal variations of the mass 
and apgular momentum parameters of the Kerr solution. 
The 1 perturbation is the NUT perturbation, i.e., the per­
turbation one obtains by linearizing the Kerr-NUT solu­
tion16 about Kerr. Finally, the perturbation generated by 
P is the perturbation toward Kinnersley's "rotating C 
metric."15 (This can be seen by making the coordinate 
and parameter substitutions given by Kinnersley in his 
Ph.D. thesis15 to recover Kerr as a limiting case of the 
rotating C metric, and linearizing the resulting metric 
about Kerr). Both the NUT and C metric perturbations 
are physically unacceptable, i.~., they would be excluded 
by the boundary conditions one would impose in any 
physical problem. (This can be seen without a detailed 
study of the pathology of these solutions by noting that 
they are independent of the coordinates xl and x4 and 
thus are stationary and axisymmetric. If they were well­
behaved, they would violate Carter's theorem3 on station­
ary, axisymmetric perturbations of a black hole.) Thus, 
we are left with the final conclusion: The only well­
behaved Kerr perturbations with if; 0 = ~4 = 0 are the 
trivial tn, it perturbations to other Kerr solutions. 

6. CONSEQUENCES 

The results of the previous two sections prove that the 
nontrivial part of a perturbation of a ~err bl.ack hole is 
fully specified by giving the quantity 1/10 (or 1/14) alone. 
Namely, if we take tb.e difference between two perturba­
\ions with the same 1/1 0' we obtain a perturb~tion with 
1/10 = O. Then, by the results qf Sec. 4, this difference 
perturbation must also have 1/14 = 0, and by the results of 
of Sec. 5 it therefore must be a trivial tn, Ii perturbation 
to other Kerr solutions. 

The main importance of this result is that it shows 
that one does not lose any.essenti.al information by work­
ing with only the quantity 1/1 0 (or 1/14 ) aJ.one. Qnce one has 
solved Teukolsky's equation12 to get 1/1 0 (or 1/14)' the com­
plete gravitational perturbation can be recovered (at 
least in principle) except for the trivial tn, Ii parts. This 
is of particular importance for stability analyses of a 
Kerr black hole. Since the Kerr geometry is stationary, 
all Kerr perturbations can be decomposed into modes 
with time dependence exp(at + iwt}. If there exist any 
modes with a> 0 obeying the appropriate boundary con­
ditions at t = 0, an initially small perturbation will grow 
without bound and the Kerr black hole will be unstable. 
However the :malysis of Press and Teukolsky19 indi­
cates th~t there are no such exponenti~ly blpwing-up 
solutions of Teukolsky's equation for 1/14' The results 
proven above rule out the remaining possibility that the.re 
Ipight be exponenti~lly growing modes which do not exclte 
1/14 (i.e., for which 1/14 = O). 
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As a final application of the results of this paper, we 
reprove Carter's theorem3 on stationary Kerr perturba­
tions and generalize it to the nonaxisymmetric case. (As 
described in Sec. 3 above, Hawking's theorem4 cannot 
exclude well-behaved stationary nonaxisymmetric per­
turbations of Kerr). Carter 3 has proven that there can 
be at most two linearly independent well-behaved station­
ary, axisymmetric perturbations of a Kerr black hole (or 
any other stationary, axisymmetric black hole, if others 
besides Kerr eXist). The generalization of this result 
for Kerr is proven as follows: In the stationary case, 
Teukolsky's equation can be solved in closed form, and 
Teukolsky12 has found that there are no solutions which 
are we.ll-beqaved both at infinity and on the horizon. 
Thus,1/I0 = 1/14 = 0 for well-behaved stationary perturba­
tions of Kerr. Then, by the results of this paper, it 
follows that the only well-behaved stationary perturba­
tions of Kerr are the trivial m, a perturbations to other 
Kerr solutions. In particular, there are no well-behaved 
stationary, nonaxisymmetric perturbations of Kerr. 
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APPENDIX: NP VARIABLES AND TETRAD 
TRANSFORMATIONS 

In the NP formalism one chooses at each point in the 
space-time two real null vectors III and nil, a complex 
combination of spacelike vectors mil and its complex con­
jugate mil. The vectors are required to satisfy llln{l =­
mllm = 1, and all other dot products are required to 
vani~h. The spin coefficients and Weyl tensor compon­
ents used in the formalism are defined as follows: 

€ = ~lll;vnlllv - m llH fi[lllv), 

"Y = ~(lll;vnllnv - mfl;V mil nV), 

a = i(lll;vnll mV - mll;v iiillm v}, 

{3 = i(lfl;VnflmV-mfl;VmllmV}, 

1/1 0 = - CaBYOlamBlYmb, 

1/1 1 = - CaBY6lanBzrm~ 

.r, - _ l.C (ZanBlrn6 - zanBmYm6) 
't'2 - 2 aBy6 ' 

1/1 3 = CaBY61anBnYiii6, 

1/14 = - CaBY6naiiiBnymo. 

The tetrad transformations which preserve the above 
orthogonality relations of the tetrad vectors can be de­
composed into a product of the following three kinds of 
transformations. 
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(1) Null rotations with lj.l fixed: 

lj.l ~ lj.l, 

mj.l ~ mj.l + alj.l, 

nj.l ~ nj.l + amj.l + amj.l + ao,lj.l. 

(2) Null rotations with nj.l fixed: 

mj.l ~ mj.l + bnj.l, 

lj.l ~ lj.l + bmj.l + bmj.l + bbnj.l. 

(3) Tetrad rotations: 

(Here a and b are complex, while A and () are real.) The 
behavior of the NP variables under these tetrad trans­
formations can be computed in a straightforward manner 
from their definitions. Explicit formulas are given in 
Kinnersley's thesis15 and by Aronson and Newman.2o 
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A facial version of superposition principle is introduced in algebraic quantum theory; similar to the 
quantum logic approach it exhibits characteristic features of quantum theory. It is shown that any 
pair of primary states satisfy the superposition principle if and only if they are quasiequivalent. A 
coherent sector is then defined as a quasi-equivalent class of primary states, which holds for both 
pure states in quantum theory and pure thermodynamic phases in quantum statistical mechanics. 

One of the basic assumptions in quantum theory is the 
superposition principle of quantum states. In the tradi­
tional framework of quantum mechaniCS, it is transcribed 
mathematically as the linearity of states, which is 
similar to the linearity of some equations of motion des­
cribing physical properties in classical mechaniCS. 
However, the physical background of superposition prin­
ciples in quantum systems is extremely different from 
classical systems, in fact, it contains the essential pro­
perties of quantum mechanics. One cannot see such 
implication from the superposition principle formulated 
in conventional quantum mechanics. Even in the recent 
algebraic approach, the superposition of two pure states 
formulated by Roberts and Roestorffl does not exhibit 
any further properties of quantum mechanics. 

On the other hand, in the quantum logiC approach, 
superposition principle implies essential features of 
quantum mechanicS. The superposition prinCiple is 
formulated for atomic proposition by Jauch2 as follows: 
For any pair of atomic propositions eland e2 with e 1 '" 

e 2' there exists an atomic propOSition e 3 such that e 3 '" 
e V e 3 '" e2 and satisfying 

e l V e 2 == e l V e3 == e2 v e3 • 

An immediate consequence is that the sublattice gener­
ated by ev e2 and e 3 , satisfying the above relation, can­
not be Boolean. Therefore, superposition principle in the 
above form implies the non-Boolean structure of pro­
position system, it is why the superposition principles 
is so characteristic in quantum systems. We refer to 
Jauch's book2 for detailed definitions of propositions and 
physical contents of the above formulation for super­
position principle. 

Jauch's formulation is indeed the superposition for 
(atomic) propositions but not for states. Hence a ques­
tion arises; whether there is a similar form for the 
superposition of states, say, in algebraic approach. 
Furthermore, in C*-algebraic framework!, the super­
position is defined only for pure states; and the coherent 
sectors, within which superposition principle holds un­
restrictedly, are also defined only for irreducible repre­
sentations. It is inadequate to the states in quantum 
statistical mechaniCS, e.g., the equilibrium states in an 
infinite system can never be pure states at finite temper­
ature. Therefore, another question: Is there another 
version of the superposition principle and the coherent 
sector which is adequate to both pure states and equi­
librium states? 

In the present note, we introduce in the algebraic 
approach a facial form of the superposition principle for 
states, which, similar to the quantum logic approach, 
exhibits the characteristic features of quantum systems, 
and which is applicable to states both in quantum theory 
and statistical mechanics. It is shown that two primary 
states satisfy the superposition principle if and only if 
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they are quasi-equivalent. A coherent sector is then de­
fined as a quasi-equivalent class of primary states; it is 
adequate to both pure states and pure thermodynamic 
phases. Several examples of physical interest are given 
to illustrate some properties of coherent sectors. We 
also compare our superposition principle with other ver­
sions of superposition in C*-algebraic formulation and 
quantum logic approach. 

Before we begin our formulation within the framework 
of von Neumann algebras, we recall some elementary 
definitions from the theory of compact convex sets. 

Given a partially ordered vector space X with generat­
ing cone X+. A subset F of X+ is said to be a face if and 
only if it is closed under addition and multiplication by 
positive scalars and is such that if x E F and y E X with 
Os y s x, then Y E F. A complementary set F' of F is 
the union of all faces H of X+ such that H n F == {O}. F 
is a split face if the complementary set F' is a face and 
each element x EX' has a unique decomposition x == Xl + 
x 2 with Xl E F and x 2 E F'. In fact, we are interested in 
the faces and split faces on the predual of a von Neumann 
algebra, in particular, those generated by normal states. 

Let ~ be a von Neumann algebra acting on a Hilbert 
space Je, and ~ ~ the positive cone of the predual ~. of 
~. If cP is a normal state of~, then there is a unique 
projection e", in~, the support of cP, such that ~(l - e",) 
== {x E~; cp(x*x) == O}. e", is the smallest projection in 
~ such that cp(eC/l) == cp(l) and CPe == cp, where CPx(') == 
cp(x·· x)/cp(x*x) for x E 'JR, with ~(x*x) '" O. 

Given two normal states CPI' cp of~, the norm­
closure of the smallest face of;t~ containing CPI (resp. 
{CPl1 CP2}) is denoted by F(CPl) [resp.F(cpl' C(2)]' Similarly, 
the norm-closure of the smallest split face of ~~ con­
taining cp\ (resp.{CPl' CP2}) is denoted by H(CPI) [resp. 
H(CPI' C(2)J. The norm:'closed faces and split faces on 
~ t can be characterized by the projections and central 
projections in ~.3.4 In fact, F(CPl) and F(cpv C(2) are 
characterized by e and em V eO" ,respectively.3 And, 

"'1 y 1 y 2 
H(cp) is by the central support c(e'!') of e",.4 

Furthermore, e can be conSidered as the decision 
effect of the micr~scopic object in the quantum mechan­
ical measurement. 3 It has been shown that the set of 
deciSion effects al forms a complete orthocomplemented 
lattice,3 which is similar to the propOSition system in 
quantum logic approach. By considering e", as a decision 
effect, one can apply the same physical illustrations given 
by Jauch,2 and formulate a similar version of super­
pOSition principle as follows: 

For any pair of normal states CPlt CP2 with e"'1 1\ e'!'2 = 0 
there exists a normal state CP3 such that e", 1\ e", = e", 1\ 

O d t · f . 3 1 3 
e"'2 = an sa IS ymg 

(1) 
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From the above arguments, this relation is equivalent to 
the following form: 

(2) 

This is why we may call the above version the facial 
superposition principle. "'3 is the superposition of "'1 
and "'2' We note that our hypothesis is different from 
the proposition system, however, eepl II eep2 :::: 0 implies 
eepl'" eep2' We shall see later that there is indeed an 
equivalent class of states satisfying the relation (1). 
Before showing this assertion, let us make some 
remarks: 

Remark 1: Similar to propositions,2 it is easy to 
see that the lattice generated by eepl' eep2' and eep3 are not 
Boolean whenever they satisfy the relation (1); in fact if 
they were Boolean, then eep3 II (eepl veep) :::: (eep3 II eep) V 
(e II em ). This relation is not true, since by the assump-

'1'3 '2 
tion, eep3 II eepl :::: 0, eep3 II e'f2 :::: 0, hence the right-hand side 
is equal to O. On the other hand, eep3 < eepl V eep2' the left­
hand side is equal to e ep3' 

Remark 2: Suppose [eepl' eep) :::: [eep2' eep) :::: 0, then 
e V em :::: e + em - em em , and em V em :::: em + e," -epl '3 epl '3 Y1 '3 '2 '3 '2 '3 
eep2 eep3' If they satisfy the relation (1) then by an im-
mediate calculation eepl :::: eep2 which is impossible by the 
hypothesis. Hence, eep3 cannot commute with eepl and eep2' 
respectively. Similarly, one can show that eep and e are 
not commutative. 1 ep2 

Remark 3: If em ,e ,and em are mutually orthogonal, 
'1 ep2 '3 

then em V em :::: em + e,", e V em :::: em + em , and em V e," 
T1 '2 '1 '2 epl '3 ,1 '3 '2 '3 

:::: eep2 + e'f3' Obviously, they cannot satisfy the facial 
superposition principle. 

Remark 4: If we consider ecp is a decision effect, 
then the set of all decision effects @ forms a lattice. 3 

Similar to the proposition system,2 if each pair of deci­
sion effects satisfy the relation (1), then @ is irreducible 
in the sense that it is impossible to reduce @ into the 
direct union of two lattices.2 

The above remarks show that the facial superposition 
principle exhibits some essential properties of quantum 
mechanics. 

We recall that two states "'1 and "'2 of a C*-algebra 
~ are quasi-equivalent (resp. disjoint) if their cyclic re­

presentations 1Tep~ and 1Tep2 induced by CPl and CP2' respec­
tively, are quasi-equivalent (resp. disjoint); cP is primary 
if 1Tep(~)" is a factor. This notion can be transcribed in 
the norm-closed split faces in our case as follows; "'1 
and "'2 are quasi-equivalent if and only if H(CP1) :::: H(CP2,), 
which is equivalent to c(eep ) :::: c(eep ), the central supports 
of eepl and eep2' respectively: CPl and

2 
CP2, are disjoint if and 

only if H(CP1) n H(CP2,) :::: {O}, which is corresponding to 
c(eep) II c(eep2) :::: O. However, c(e'f) and c(eep) commute, 
hence c(eepl) II c(eep) :::: c(eep)c(eep) :::: 0, which implies 
c(eepl) and c(eep) are orthogonal. We are now able to 
characterize those states satisfying the facial super­
position principle. 

Let CPt> CP2' and CP3 be primary normal states with 
supports eep ,eep , and eep satisfying the relation (1). Sup­
pose that cP;, CP2,2, and CP-.3' are mutually disjOint, then by the 
preceding argument, c(eep), c(eep), and c(eep) are mutually 
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orthogonal. Hence c(e" ) V c(e,,):::: c(em ) + c(em), c(eep) V 
'1 '2 '1 '2 1 

c(eep) :::: c(eepl) + c(eep3)' And by the definition of central 
support, c(eepi) > eepi (i :::: 1,2,3), thus c(eep) + c(eep) > 
eepl V eep2' It follows that 

[c(eep) + c(eep) ](eepl V eep2) :::: eepl V eep2' 

Similarly, 

[c(eepl) + c(eep)](eepl V eep3) :::: eepl veeps' 

By the relation (1), (3) equals (4), hence 

c(eep) + c(eep) :::: c(eepl) + c(eep3)' 

(3) 

( 4) 

Thus, c(eep) :::: c(eepS> , which is impossible by the assump­
tion that CP2, and CP3 are primary and disjoint. Therefore, 
CP2 and CP3 are quasi-equivalent. Similarly, CPl and CP2, are 
quasi-equivalent, Hence CPt> CP2' and CP3 belong to a quasi­
equivalent class. 

Conversely, if CPl' CP2" and CP3 are quasi-equivalent, then 
c(eep) :::: c(eep) :::: c(eepS>. But, c(eep) V c(eep) > eepl V eep2' 
hence c(e," ) > em V em • It follows that 1 - c(eep ) < 1 -

'1 TI '2 1 

(eepl veep), so that 

[1 - (eepl veep) ][1 - c(eepl)] :::: 1 - c(eepr 

Similarly 

(5) 

(6) 

By assumption, c(eep) :::: c(eep)' thus (5) equals (6), and 
1 - (eepl veep) :::: 1 - (eepl veepS>, hence 

Similarly, one can show that e'i'l V eep2 :::: eep2 V eep3' Thus 
eepl' eep2' and eep3 satisfy the relation (1). Therefore we 
have proved the following: 

Proposition 1: Let CPl' CP2' and CP3 be primary 
normal states with supports eepl' eep2' and eep3' Then eepl' 
eep2' and eep3 satisfy the relation (1) if and only if CPl' CP2" 

ana CP3 are quasi-equivalent. 

If we consider a C*-algebra ~ with identity, then the 
double dual ~ ** of ~ is a von Neumann algebra, and the 
dual ~ * of ~l coincides with the predual of ~ **. More­
over, m can be regarded as a C*-subalgebra embedded 
into 91**. Therefore the above formulation and result 
can be transferred to the states on a C*-algebra. 

From Proposition 1, it is natural to define a coherent 
sector as a quasi-equivalent class of primary states' on 
a C*-algebra. This definition meets the phYSical require­
ment of a coherent sector, where superposition of states 
can be performed unrestrictedly. Some remarks about 
coherent sectors are given: 

Remark 5: We note that our notion of coherent 
sector is slightly different from the coherence of pro­
position system given by Jauch.2 

Remark 6: For pure states, quasi-equivalence is 
coincided with unitary equivalence, hence our definition 
of coherent sector is equivalent to the sector in C*­
algebraic approach.l Moreover, Proposition 1, and hence, 
coherent sectors are interesting in particular for the 
case of equilibrium states in quantum statistical 
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mechanics, where pure phases are expressed mathe­
matically as primary states. 

Remark 7: Let 3' be the set of all primary states of 
a e*-algebra~, then the coherent sectors Q" form a 
disjoint covering of 3'. Since each coherent sector Q" 
corresponds to a central projection e" in ~ **, regarded 
as a von Neumann algebra acting on a Hilbert space X, 
hence the disjointness of {Q,,} implies the orthogonality 
of {eO'}. Therefore, the corresponding Hilbert space X 
can be decomposed into the direct sum of coherent sub­
spaces X" == e"X, i.e., X == $" X"' which amounts to a 
system with commutative discrete superselection rules 
in the conventional quantum mechanics. 

There are many examples for quasi-equivalent classes 
of primary states in mathematical literature. We men­
tion here only some of those having physical interest. 

Example 1: Given a e*-algebra ~ with identity, let 
G be a group represented as a large group of auto­
morphism of ~ ,5 and SG be the set of all G -invariant 
states on ~. IT the set of extremal pOints of SG is de­
noted by E(S G), and CPp CP2 E E(SG) n 3' , then CP1' (/2 E Q" 
if and only if IIcp1 - (/211 < 2.6 Indeed, if Q.f == E(SG) n Q", 
then Q.f == {cpJ, whenever Q.f '" ~. 

Example 2: Let ~ be a e*-algebra with net {~J of 
sub-e*-algebras in the sense of Ref. 7, then a coherent 
sector Q of ~ has the following property: For any pair 
CPp (/2 E Q and each E > 0, there is an ~ ex in the net such 
that 

where ~ ~ is the relative commutant of ~ ex in ~ .7 

In the case of a quasilocal algebra ~ of a quantum spin 
system, a coherent sector of states with short-range 
correlation has the same property as above.8 

Example 3: For the equilibrium states on an infinite 
system at a given temperature, two KMS states for two 
different temperatures are disjoint.9 Hence pure phases, 
which are primary KMS states, for different temperature 
belong to different coherent sectors. 

Example 4: In the case of macroscopic observables 
in the quantum mechanical measurement as discussed by 
Hepp,10 two primary states belong to two different co­
herent sectors whenever there exist two different expect­
ation values of macroscopic observables in these states. 
For the details about coherence and classical observ­
ables, we refer to Ref. 10. We note that the notation of co­
herence given by Hepp is also slightly different from our 
coherent sector, however both of them are coincided for 
primary states. 

As we have noted in Remark 6, our definition of co­
herent sectors are equivalent to the sectors of pure 
states given by Roberts and Roepstorff.1 In fact, their 
superposition of states is defined as follows 1: Let cP be a 
pure state of a e*-algebra~, and X 1 ,X2 E ~ be linearly 
independent such that ep(x;x1 ) '" 0, ep(x;x2) '" 0, then 
cP % +% is called a superposition of ep% 'and ep% ,where 

1 2 1 2 

CP%(·) == cp(x*'x)/cp(x*x) for x E~. We shall show that 
this notion of superposition for primary states is also 
related to ours; more preCisely, CP% +% ,ep" ,and cpJC.. all 

1 2 1 --~ 
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belong to the same coherent sector. This can be seen 
from the follOwing. 

Proposition 2: IT cp is a primary state, then cp" and 
ep belong to the same coherent sector. 

Proof: At first we have to show that ep" is also 
primary. Let us recall a partial ordering on the state 
space of ~ ; two states ep and I/t on ~ are in the relation 
cp <;, I/t whenever ;p ~ lji, where ;p is the norm -closure of 
the set {cp,,; x E ~ }. And, ep <;, I/t if and only if cp E lfi. 
Moreover, ep is primary if and only if <;, totally orders ;Po 
We refer to Emch's bookll for a detailed exposition of 
this ordering defined by Kadison. Applying to our special 
case: CP% E cp, hence ~ also totally orders $", so that ep" is 
also primary. 

Let H(cp) and H(ep,,) be the norm-closures of the 
smallest split faces containing ep and ep", respectively. As 
H(cp,,) r:;;, H(ep), H(ep,,) n H(cp) '" {O}, hence cp" and ep are not 
disjoint. But, cp and CP% are primary, by assumption and 
the above argument, therefore ep and cp" are quasi-equi­
valent, which implies that ep% and cp belong to the same 
coherent sector. 

From Proposition 2, it follows that ep +" CPx, 'Px all 
Xl 2· 1 2 

belong to the coherent sector containing cpo 

We give a final remark, to compare our version of 
superposition with another one defined by Varadarajan 
in quantum logic approach.1 2 A lattice .£ with zero ele­
ment 0 and unit element 1, equipped with an orthocom­
plementation a ~ a', is called a logic, if (i) for any 
countably infinite sequence ap a2 , ••• of elements of .c, 
v n an and II n an exist in .c, (ii) if a l , a2 E .c and a l < a2, 
there exists an element a3 E .c such that a3 < a1 and 
a3 v a l == a2 • Furthermore, a state on a logiC .c is a 
real-valued function p : a ~ pea) for a E .c, such that (i) 
o ~ pea) ~ 1 for all a E .c, (ii) P(O) == 0, p(l) == 1, and (iii) 
if a l , a2 , ••• is a sequence of mutually orthogonal ele­
ments of.c and a == Vn an' thenp(a) == ~nP(an). 

It has been shown3 that the set of all decision effects 
@ is a logic. It is not difficult to see that a normal state 
restricting on @ satisfying the above conditions of a 
state on a logic, indeed (iii) holds in particular for a 
normal state. 

LetP1 andP2 be two states on a logiC £. A state Po 
on £ is called a superposition of Pl and P2 if the follow­
ing property is satisfied12 : 

a E .c'Pl (a) == P2(a) == 0 implies po(a) == O. (7) 

Given three normal states CPl' 1P2, and % with supports 
e ,e,n, and em , respectively, if em ,em, and e,,, satisfy the 

"'1 T2 T3 Tl T2 T3 

relation (1), then e"'3 < e"'l V e"'2 which implies 

(8) 

IT we denote by 9l (resp. ~J the set of all normal 
states (resp. the positive portion) of a von Neumann 
algebra~. Let ~ (resp. S) be a subset of 9l (resp. ~+), 
and~.L == {x E ~+; ep(x) == 0 for all ep E~} S.L == {ep E 

9l; ep(x) == 0 for all XES}. Then F(%) == {ep3P.1., and 
F(CP1' (/2) == {T}.L.L, where T == ><CPl + (1 - ><)1Al with Jt E 
(0,1).3 Hence, the relation (8) implies {TP S {«P3p, as 
{~,(/2}.Lr:;;,{~.L. Th&efM~ 
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(9) 

It is easy to see that for those e E (.lj such that CPl (e) = 
CP2(e) = 0, then e E {CPv ({2P, hence by (9), CP3(e) = 0, 
which satisfies the condition (7). Therefore we have 
shown that our superposition CP3 is a superposition of CPl 
and 'P2 on logic (.lj, whenever CP3 is restricted on (.lj. 
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The one-dimensional mathematical problem of finding the scattering amplitude for weak reflection 
by slowly and continuously varying plane layered media was defined and solved by an extension of 
the WKB method by Chakraborty. A further study of the solution of this problem near the zeros of 
the parameters is considered in this note. We find quantities proportional to the energy density and 
energy flux density. In the last section some speculative remarks about possible lines of future work 
are made. 

I. INTRODUCTION 

The one-dimensional mathematical problem of finding 
the scattering amplitude for weak reflection by slowly 
and continuously varying plane layered media was de­
fined and solved by an extension of the WKB method by 
Chakraborty. 1 The investigation should be of interest to 
a wide range of physicists dealing with certain mathe­
matical aspects of wave propagation. In the present note 
we further extend the study of the pair of first-order 
differential equations 

ct 2u+iv'=0, 

{32v + iu' = 0, 

(1.1) 

(1. 2) 

where ct 2 , {32 are the slowly varying parameters and a 
primed quantity means derivative of the corresponding 
unprimed quantity with respect to the independent varia­
ble ~. The solution of these equations in the neighbor­
hood of the Singularities of the solutions of one of u and 
v or of both will now be considered. For the phYSical 
problem of propagation of waves through a slowly vary­
ing medium, the region containing these Singularities 
is identified with the region where the direction of prop­
agation is parallel to the layers of equal value of the 
slowly varying parameter. A special case of this solu­
tion can be identified with the solution of the TM field 
equations (Landau and Lifshitz2) for slowly varying di­
electric media in the neighborhood of the zero of the 
dielectric constant. 

Broer and Van Vroonhoven3 have defined two quanti­
ties whicl) can be taken to be proportional to the energy 
density and the energy flux density in any actual physi­
cal problem. These two quantities were defined in terms 
of the field variable If! which satisfies the second-order 
one-dimensional wave equation 

(1. 3) 

We have extended the ideas of Broer and Van Vroon­
houen by finding the values of energy density and energy 
flux density in terms of the two field variables u and v 
which occur in our pair of first-order equations (1.1), 
(1. 2). But we have found that the ideas of Broer and 
Van Vroonhouen cannot be uniquely extended to the one­
dimensional Klein-Gordon equation. The Klein-Gordon 
equation is usually obtained from the self -consistent 
system of plasma field equations having first-order 
partial deviatives with respect to time and space which 
yield for a /'at= - iw the pair of equations of the type 
(1.1), (1. 2). 

We define some three-dimensional reflection prob-
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lems. The n-dimensional generalized multivariable re­
flection problem in which n field variables and their n 
first order derivatives are linearly related by n linear 
simultaneous algebraic equations is stated. 

II. SOLUTION NEAR A ZERO OF THE PARAMETERS 

The second-order equations for u and v obtained 
from (1.1), (1. 2) are 

u" - (log{32),u' + ct 2{32U= 0, 

v" - (logct2) 'v' + ct 2{32v = 0. 

(2.1) 

(2.2) 

To show the behavior of these equations in the neighbor­
hood of a zero of ct 2{32 on traditional lines, we put 

ct 2{32 = -Ao( ~ - ~o), 

p=A~/3(~ - ~o) 

and get 

[n 2 
- (3(1/{3)" - p ](u/{3) = 0, 

[D2 _ ct (1/ct)" - p](v /ct) = 0, 

(2.3) 

(2.4) 

(2.5) 

where D=d/dp, x'=dx/dp, etc. The value of p obtained 
from the equation p+{3(1/{3)"=0 is not in general identi­
cal to p obtained from p + ct (1/ct)" = ° because ct and {3 
do not necessarily have identical functional dependence 
on p or on ~. Hence the point at which the direction of 
propagation of u is perpendicular to the ~ axis is not 
identical to the similar point for v. In other words, the' 
Position of the mirror for u does not coincide with that 
for v if ct and {3 are slowly varying with respect to ~. 

Budden (Ref. 4, Sec. 9.2) pointed out this peculiar be­
havior in the Maxwell equations in a medium in which 
the dielectric constant varies slowly in space. He com­
mented that the solutions do not represent progressive 
waves because in a progressive wave field the variation 
in ~ is contained in the factor exp<p(~) which should be 
same for all of the associated field variables. The phys­
ically interesting point is that the motion of a surface of 
constant u is not identical with that for v. 

The pair of equations (1. 1), (1. 2) for electromagnetic 
wave propagation in slowly varying dielectric medium 
(Bremmer5), in plasma (Chakraborty, 1970)6 or for 
acoustic type of propagation in slowly varying warm 
plasma (chakraborty7) are such that ct 2

, (32 are connected 
in a specific way, for example, in one or the other of 
the following forms 

where a~, b~, ct~, cti are constant. We consider the 
relation 
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a2=a~ -aUf32 (2.7) 

for an interesting solution of (1. I}, (1.2) which should 
not be identified with the material given beneath equa­
tion (2.2). In this case, the equation p+a(l/a}"=O 
yields the .equation 

(I)" ( a 2(32 ) {3'2 (a~ + 2aU(32
) 

p+ f3 73 =p2-~ --W a~-aUf32 , 

which is in general different from the equation p + f3(I/ 
f3)" = 0 for a wide range of continuous functions f3 of p. 
Writing (2.1) as 

(u'/{32)'+a 2u=0, (2.8) 

putting f32 = a( ~ - ~o), a 2 from (2. 7) into (2. 8) we get 

u"-u'/p+(a~ap-aDu=O, (2.9) 

where now p= ~ -~, x' =dx/dp, etc. This equation for 
u is identical in form to the equation for the induced 
magnetic field B of Landau and Lifshitz (Ref. 2, p. 286, 
Problem 1) [which is By of the TM field of Chakraborty 
(1970)]. Following Landau and Lifshitz, therefore, for 
a 1 * 0 the two independent solutions, 

ul(p)=p2+aip4/8-aa~5/15+'" , (2.10) 

u2(p) =u1 (p) log(a1P) + 2/a~ - 2a~a/3a~p3 + •••. (2. 11) 

As p-O we find that u1-0, u2-2/a~=uo (say). Our v 
is identical to Ex of Landau and Lifshitz and so 

v'" - (ia~uo/a) log(a1P). (2.12) 

For oblique incidence a 1 corresponds to the component 
of the wave vector in the plane of incidence and parallel 
to the layers of equal value of the slowly varying pa­
rameters (see Ref. 2, Problem 1). When a~=O the 
solutions (2. 10) to (2.12) do not hold good because the 
wave field equations for oblique incidence cannot be 
identified with the model equations (1.1) and (1. 2). In 
this case the relation (2.7) gives 

(a 2 -a~)f32=0. 

If a 2=ag, f32*O, simple solutions of (2.1) and (2.2) can 
be easily found out because they correspond to the nor­
mally incident field solutions. In the neighborhood of 
f32 = 0 the original equations can be easily integrated. 

When f32 = a~a 2, up to lowest nonvanishing order we 
have 

a2f32"'a~a(~ - ~o). 

This case has been treated above in Eqs. (2. 3) to (2.5). 

When f32 =bga 2 both a 2 and f32 have their zeros at the 
same point and so near ~ = ~o 

a2f32=const(~ - ~)2. 

The consequent field equations can not be reduced to 
stokes equations of the type (2.5) by the substitution 
(2.4). For this reason this case is not discussed here 
and may be considered elsewhere in future. 

III. THE CONSERVATION CONDITION 

The exact solutions of (1.1), (1.2) should satisfy the 
conservation law 

aw +divS=O 
at ' 
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where Wand S are density and flux of some conserved 
quantity which can be the energy density. We note that in 
place of Wand S quantities which are proportional to 
them also can be used in (3. I). The expressions for the 
energy density and the energy flux density are ultimate-
1y proportional to linear combination of squares of the 
solutions for u and v. Broer and Van Vroonhouen3 have 
considered these questions in general terms for solu­
tions of the second order wave equation (1. 3). They 
have defined Wand S as 

1 (1 a1f!* al/! + al/! al/!*) 
W= 2" c2 at at a[--af' 

1 (a1f!* al/! + al/!* al/!) 
S=-2"ata[ --afat' 

(3.2) 

(3.3) 

where l/!* is the complex conjugate-of l/!. The three-di­
mensional generalizations of these quantities can be de­
fined as 

W= !(..!. al/! al/!* +(gradl/!grad1f!*~ 
,2 c2 at at 7' 

S = - ~e:; gradl/! + ~~ gradl/!*). 

The form of the positive definite W shows that it is 
independent of the time variable because l/! can be writ­
ten as a product of a function of position multiplied by 
exp( - iwt). Hence in one -dimensional space problems 
S must be a constant. The ratio S/W is the group veloc­
ity of propagation. 

Denoting ax/at by x, ax/a~ by x', we get 

W'Fs/c=H~ ±l/!*)(~±l/!} (3.4) 

where l/! satisfies Eq. (1. 3). 

The equation for u obtained from (2. I} can be written 
in the normal form 

(qu)" + (qu)(l- q" /q) = 0, 

where q=(a/f3)1/2, x'=dx/dp, p=faf3d~. 

Putting l/!=(qu) we therefore get 

S = (qu) a~ (qu)* - (qu)* o~ (qu») i~ 

= ~(uv* +u*v), 

2S (a a"f3 - a{3" (a'f3 - a{3'}2) 
2W'F C =uu* 7i - 2a 2f32 + a3f35 

i(a ' f3 - af3'}(u*v - uv*} vv* f3 
+ 2a 2f32 + --a-

w(uv* +u*v) 
'F c ' 

(3.5) 

where a' = da /d~, etc. In this way the physically sig­
nificant quantities Wand S are defined in terms of u, v. 

IV. SOME GENERAL REMARKS 

The more general pair of first order equations (1. 1), 
(1. 2) then are two linearly independent linear combina­
tions equated to zero of the four quantities u, v, u', v', 
for example, the pair of equations 
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CJl2U +iv' +i~2U' +b1
2V=0, 

{32v + iu' + ia2
2v' + b2

2U = 0, 

(4.1) 

(4.2) 

where the parameters CJl2, {32, ~2, b/, a 2
2

, b2
2 must 

be slowly varying functions of ~ if the two equations are 
nonhomogeneous. 

In the case of two semi-infinite uniform media on the 
two sides of the plane ~ = ~o the boundary conditions 
satisfying these equations can be written as 

v 1 + a 2
11u 1 = v 2 + a212U 2, 

u 1 +a221vl=U2+a222v2' 

(4.3) 

(4.4) 

where a1l
2 is the value of ~ 2 on ~ > ~o, ~2 2 its value on 

~ < ~o and similarly a21 2, ~2 2 are the values of a2
2 on the 

two sides of ~ = ~o. Since a/, a2
2 can have independent 

values the solution of this problem should be a two pa­
rameter boundary value problem. 

The boundary conditions imposed on the solution of 
the Eqs. (4. 1) and (4. 2) are derived by integrating them 
over an infinite sinal distance E surrounding the point 
~ = ~o and requiring that the integrals involving u and v 
approach zero as E - O. It is thus not necessary to re­
strict the boundary conditions only to the case of two 
semi-infinite uniform media, that is, one only re­
quires nonsingular behavior of CJl2, {32, b1

2, and b2
2 on 

both sides of the interface, but there can be inhomo­
geneity and also as many interfaces as one wishes. 

We can even formulate the problem of solution of the 
n field variables u, v, w,'" from n linear combination 
equated to zero of the 2n field variables u, v, w,'" u', 
v', w',···. The solution of these equations in the sense 
conceived earlier by the author1 may be called the solu­
tion of the generalized multivariable reflection problem. 

Instead of the one -dimensional pair of first order 
equations (1. 1), (1.2), we can conceive of solution of the 
more general three-dimensional pair of equations 

CJl 2A +igradcp =0, {32cp + idivA =0 

or the pair of equations 

CJl 2A +icurlB =0, {3~ +icurIA=O, 

where A, B are vector fields, cp a scalar field, CJl2, {32 
are the slowly varying parameters. 

The one dimensional Klein-Gordon equation 

~ 1 a2 lf! w~ 
a ~2 - c2 a f - ? If! = ° 

is usually obtained from the plasma field equations 
having first-order partial derivatives with respect to 
time and space which yield for a/a t = - iw the pair of 
first-order equations of the type (1. 1), (1. 2). This equa­
tion can be written as 
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where a/aT=a/at+iwo, a/aT*=a/at-iwo. We can then 
define the quantities 

2W-..!..£t alf!* alf!* alf! 
- c 2 aT aT* + a~ a~ , 

-28= alf!* alf! + alf!* alf! 
aT* a~ a~ aT 

and obtain 

W- (w -WO}2 If!lf!* + If!*'lf!' - 2C2 , 

8 i 
1=--= - (If!lf!*'-lf!*lf!'). w-wo 2 

But this correspondence is not unique because we can 
analogously define 

_ -.!..1.!1!.. alf!* alf!* £!!!.. 
2W - C2 aT* aT + a~ a~ , 

alf!* alf! alf!* alf! 
-28= aT a1 + aT aT* , 

and get 

W= (w~~o)2 If!lf!*+lf!*'lf!', 

8= i(W;Wo) (If!lf!*' -If!*lf!'), 

1 __ 8_ 
- w+wo • 

Both the definitions of W and 8 yield the results of 
Broer and Van Vroonhoven for wo= 0. 

Convergence of the Bremmer (1949) solution is dis­
cussed by these authors and earlier by other authors. 
In this connection we can say that the purely mathemati­
cal question of the boundedness and convergence of the 
sequence of solutions developed by the extended WKB 
method by Chakrabortyl remains open. 

In conclusion, the author acknowledges his indebted­
ness to the referee for taking unusual interest in this 
note and in the preceding paper, and for making some 
useful suggestions. 
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The field of real numbers in axiomatic quantum mechanics 
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Consider a system of states and observables based on the logic L (V, D) of al1 cj>-closed subspaces of 
a vector space V over a division ring D with a definite Hermitian form cj>. Gudder and Piron have 
shown that if the system admits a special kind of observable cal1ed the smooth maximal observable, 
then the division ring D must be an extension of the real field. In this paper it is shown that the 
same conclusion can be obtained from weaker and more physical assumptions which are in principle 
experiment verifiable. 

I. INTRODUCTION 

Jauch and Piron1 have shown that physical arguments 
can be found to deduce that the collection of propositions 
for a physical system forms a complete, atomic, semi­
modular, orthomodular lattice L called the logic of the 
system. In a previous paper2 we have shown that these 
arguments can be given an exact mathematical form 
with the help of the so-called probability function p. 
Namely, we have given a list of sufficient and necessary 
conditions (called axioms) to be satisfied by a map 
p: exs XB(R) - [0, 1] (where e and S are interpreted, 
respectively, as the set of all observables and the set 
of all states of the system, and p( A, O!, E) is the prob­
ability that a measurement of observable A for the sys­
tem in state °! will lead to a value in a Borel set E on 
the real line) in order that p be representable in the 
form p(A,O!,E)=qJ"J.iA(E), where J.iA is an L-valued 
measure and qJ" is a probability measure on L, L being 
some (fixed for the whole system) irreducible complete 
orthomodular atomistic lattice with the covering prop­
erty, of length greater than four. 3 It was shown by Mac 
Laren4 and Piron5 that this type of lattice can be identi­
fied with the lattice L(V, D) of all cf> -closed subspaces of 
a vector space V over a division ring D with a definite 
Hermitian form cf>. To pass to the usual Hilbert space 
formalism of quantum mechanics one has to assume 
that D is the field of complex numbers (in some theories 
the field of reals and the field of quaternions have also 
been used). There remains an open question: What 
physical arguments can be given to support the assump­
tion that D is the field of complex numbers? This prob­
lem has been partly solved by Gudder and Piron6 who 
showed that if the system admits a special kind of ob­
servable (called smooth maximal observable), then the 
division ring D must contain a sub ring isomorphic to the 
r~al field. Since the only finite extensions of the reals 
are reals, complexes, and quaternions, this result 
strongly supports our selection for D as one of these 
fields. However, not all the conditions given by Gudder 
and Piron can be termed as physically basic or experi­
mentally verifiable. Our point of view is that conditions 
that can be termed as physically basic should be ex­
pressible in terms of the probability function p(A, O!, E), 
since this function constitutes a direct link between the 
theory and experimental practice. In other words, every 
statement expressed in terms of p can be, at least in 
principle, experimentally verified. Some of the assump­
tions of Gudder and Pi ron do not satisfy this require­
ment. For example, they assume that every probability 
measure on R(X) [where R(X) is the range of an observ­
able X] has a unique extension to a pure state. The 
range of an observable is not an experimentally accessi-
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ble object and the more so is an arbitrary probability 
measure on R(X). The same objection can be raised 
about the second assumption that arbitrary signed mea­
sures on R(X) satisfy some condition. Physically ac­
cessible objects are states, observables, and the prob­
ability function p, as well as notions derived from them 
[e. g., a probability measure induced on B(R) by an 
observable and a state, but not an arbitrary probability 
measure on B(R)]. Most ideally, all assumptions about 
a physical theory should be expressible in such terms. 

In this paper we would like to show that the main con­
clusion of Gudder and Piron's theorem can be obtained 
under weaker and more physical assumptions satisfying 
the above discussed requirement that all the involved 
notions are derived from the probability function with 
the help of states and observables. We will not only ob­
tain the same conclusion under weaker assumptions, but 
also the proof of the theorem will be simplified. 

II. BASIC DEFINITIONS 

Let e be the set of all observables and S the set of 
all states associated with a fixed physical system F. 
For A E e, O! E S, and a Borel set E on the real line, let 
p(A, °! , E) be the probability that a measurement of A in 
state °! will lead to a value in E. We assume that the 
function p: exs XB(R)- [0,1] [where B(R} is the Borel 
a algebra of the real line] satisfies the axioms listed in 
a paper of the author, 7 so there is a vector space V over 
a division ring D with a definite Hermitian form such 
that each AE e corresponds uniquely to an L-valued 
measure J..! A and each °! E S corresponds uniquely to a 
probability measure m" on L, and we have p(A,O!,E} 
= m "J..! A (E) (here L denotes the a-orthocomplemented 
lattice of all cf>-closed subspaces of V and is called the 
logic of the system). In the sequel for Simplicity we 
shall identify an observable A with the L-valued mea­
sure J.i A and a state °! with the probability measure m" 
on L writing J..!A =A and m,,=O!. 

According to the construction described in the au­
thor's paper, 8 each member of L=L(V,D} can be identi­
fied with an equivalence class I (A, E) I ={(B, F) : BEe, 
FEB(R), p(A,O!,E}=p(B,O!,F} for every O!ES}. An 
element I (A, E) I is an atom of L if it is not equivalent 
to (A, cf», i. e., if there exists °! r=:: S such that p(A, O!, E} 
* 0, and if for every (B, F) not equivalent to (B, cf>) we 
have either p(B, O!, F} = p(A, O!, E} for all °! E S [then 
I (B, F) I = I (A, E) I], or else there is °! E S such that 
p(B, °! ,F} > p(A, O! , E}. Thus the definition of an atom of 
L can be expressed in phYSical terms and we may use 
it in further construction. 

Copyright © 1973 American Institute of Physics 1469 
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A state a E S is said to be pure if 

p(A, a,E)=tc;P(A, auE) 
;=1 

for all A E~, EE B(R) implies c; = 1 for some i (we 
assume c i ~ 0, ~c;= 1). We shall assume that our system 
of states based on logic L satisfies the so-called Gleason 
axiom. Namely, we assume that for each pure state a 
there is a unique atom I (A, E) I E L such that p(A, a, E) 
= 1. We shall denote this atom by a(a). 

Let M be a set of pure states M ~ S and let A be a 
fixed observable. Each pure state a EM determines a 
probability measure a A on B(R), namelyaA(E) 
= p(A, a, E) for E E B(R). Assume that the observable A 
has the following two properties with respect to M: (1) 
p(A, au E) = p(A, a 2, E) for a 1, 0!2 EM and for all 
E EB(R) implies a 1 = a 2 (i. e., at = at for au a2 EM 
implies a 1 = ( 2 ), and (2) for every au a 2 EM and every 
Cu c2 ~ 0, c1 + c2 = 1, there exists a EM such that 
p(A, a, E) = c1P(A, au E) + c~(A, a 2, E) for all E E B(R) 
(i. e., the set {a A : a EM} is convex). Note that condi­
tions (1) and (2) are expressed in the admissible lan­
guage of the function p. 

We say that two pure states au a 2 are Singular with 
respect to A, a 1 1.A a 2, if there exist Borel sets Eu 
E 2EB(R), E1n E 2=c/>, E1U E 2=R, such that p(A,au E1) 
= p(A, a 2 , E 2 ) = 0. If au a 2 are singular pure states, we 
can form, for any Cu c2 ~ 0, c1 + c2 = 1, a signed mea­
sure c1at - c2a~. Such signed measures are said to be 
induced by states. 

If there are a set of pure states M and an observable 
A with properties (1) and (2), we can associate with 
every signed measure cp induced by states from M an 
atom a(CP)E L as follows: 

If cp=±aA, then a(CP)=a(a). 

If cp = c1at - c2ai, a 1 1.Aa 2, Cu c2 > 0, 

c1 +c2=1, then a(cp) = [a(a1)va(cp*)]Aa(CP*)', 

where cp* =c2a t +c1a~. 

Observe that by (1) aA uniquely determines a and by 
(2) there is a unique a such that a A =CP*, so a(CP*) is 
well defined. It follows from a lemma proved by Gudder 
and Piron9 that for any atoms p* qE L, [pvq]Aq' is an 
atom, so a(cp) is always an atom. 

Let Il be a fixed measure on B(R). In most applica­
tions it will be the Lebesgue measure or some discrete 
probability measure. We say that a pure state C{J is 
absolutely continuous relative to Il with respect to an 
observable A, cP« All, if cpA is absolutely continuous 
relative to Il (cpA« Il). A signed measure C{J = c1a t - c2a i 
is absolutely continuous relative to Il, cp «All, if both 
a 1 «All and a 2«AjJ.. If M is a set of pure states, the 
set of all signed measures induced by states in M which 
are absolutely continuous relative to Il with respect to 
an observable A will be denoted by M!. 

Observe that the notion of absolute continuity relative 
to a measure Il with respect to an observable A can be 
expressed in terms of the probability function p, since 
cp «A Il means that Il(E) = ° implies p(A, cp, E) = 0. 

If cp «All, then dcp Idll =dcpA Idll denotes the Radon­
Nikodym derivative of cpA with respect to Il. We have 
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(dCP Idll)E L1(R, Il) and it is easy to see that an experi­
mental procedure can be devised to calculate the values 
of the function dcp I dll. Consequently, the function dcp I dll 
also belong to our admissible language and may be used 
to formulate assumptions about the considered system. 

Finally, we assume the following convention. If rE R 
is a real number (or a real-valued function), we define 
r1/2=r1/2 for r~ ° and r 1/2= _(_r)1/2 for r< 0. For 
example, if C{J = c1at - c 2a:(at 1. A a2, Cu C2 > 0, 
C1+c2=1), thencp1/2=(c1 a t)1/2_(c2a i)1/2. Note that 
(cp1/2)2=C1a t +c2a i = I cpl. 

ill. THE THEOREM 

We can now state and prove a modified version of 
Gudder and Piron's theorem. 

Theorem: Assume that the system of observables ~ 
and states S based on a logic L = L(V ,)J) satisfies the 
Gleason axiom and admits a set of pure states M ~ S and 
an observable A with the following properties: 

(1) If for au a 2 EM p(A, a1, E) = p(A, 0!2' E) for all 
EEB(R), then a 1=a2• 

(2) For every a1> a 2 E M and every Cu c2 ~ 0, c1 + c2 

= 1, there is a EM such that p(A, a, E) =c!p(A, au E) 
+ c~(A, a 2 , E) for all E E B(R). 

(3) Let CPUCP2 be any distinct (CP1 *±C(2) signed mea­
sures induced by states in M which are absolutely con­
tinuous relative to the measure jJ. on B(R) with respect 
to A, CPu CP2 E M!. For every pair of non-zero real 
numbers ru r 2 E R there is cP E M! such that 

(
dCP)1/2 (dC{J1)1/2 (dCPN/2 

(*) r djJ. =r1 ~ +r2 dii) 

for some rE R, and there exists cP E M! such that (*) 
does not for any rE R and any ru r 2 E R, r; * 0. (We 
assume that M! has at least two distinct elements. ) If 
(*) holds (with CP1 *±CP2 and rj *0), then a(cp) < a(CP1) 
va(CP2). If (*) holds with r 1=r2=1, r=±.f2, then 
a(CP1) 1. a(CP2). 

Then there is a real vector space W ~ L 2(R, Il) of 
dimension ~ 3 and a lattice monomorphism from the 
lattice of finite-dimensional subspaces of W to the lat­
tice of finite elements of L that maps atoms to atoms. 
Consequently, by a theorem due to Baer, 10 the division 
ring D is an extension of the field of real numbers. 

Observe that all the assumptions of the theorem are, 
or can be, expressed in the physically basic language of 
the probability function p. This includes the assumptions 
about atoms in L, since, as we have shown,l1 the lattice 
operations (and the relation of orthogonality) in L can 
also be expressed in terms of the function p. 

It is easy to see that if A is a smooth maximal ob­
servable with respect to the measure space [R, B(R), Il] 
(in the sense of Gudder and Piron), then A satisfies the 
assumptions of the theorem. In particular, the system 
of states and observables of quantum mechanics based 
on the complex Hilbert space L 2(R, Il), where Il is the 
Lebesgue measure, also admits a set of pure states M 
and an observable A satisfying conditions (1), (2), and 
(3). Namely, in this case M can be taken to be the set 



                                                                                                                                    

1471 M.J. Maczynski: Real number field in axiomatic quantum mechanics 1471 

of pure states corresponding to nonnegative unit vectors 
and A the usual position observable. As pointed out by 
Gudder and Pi ron, 12 the position observable is not maxi­
mal with respect to the set of all pure states of L 2(R, p.), 
so in general M is not the set of all pure states of the 
system but only a subset of it. 

Proof of the theorem: We define 

W ={ r(:Y 12: cP EM!, rE R}. 
Since for any fuf2 E W we have rtfl + rd2 E W for all 

ru r 2 E R [if CPl * ± CP2 this follows from (3), otherwise 
this is obvious], W is a real vector space. Since (dCP / 
dp.) E L 1(R, cp) implies (dcp /dp.)1/2 E L 2(R, p.), we have 
W ~ L 2(R, p.). Condition (3) also implies that dim W:;;, 3. 

For ° * fE W, let (f) denote the one-dimensional sub­
space of W generated by f. Let Lo(W) denote the set of 
all one-dimensional subspaces of W [the set of atoms of 
L(W, R)], and let Lo(V) denote the set of all atoms of 
L = L(V, D). We define a map 1/1: Lo(W) - Lo(V) as fol­
lows: iff=r(dCP/dp.)1 /2, r*O, then I/I(f]=a(cp). We will 
show that this map is well defined. Assume that r 1 (dcp / 
dp.)1/2=r2(dCP2/dP.)1/2, r 1 *0. This implies O(dCP/dp.)1 /2 
=r1(dCPl/dP.)1/2 -r2(dCP2/dP.)1/2 for all cP EM!. Hence 
CPl =±CP2 by (3). If CPl =aA , a EM, then a(CPl)=a(CP2) 
=a(a) by definition. Letcpl=clat-c2a~, a 11A a 2, 
CU c2>0, c1+c2=1, andletcp2=-cpl=c2a~-clat. We 
have CPt =CP~ = c2at + cla~. By definition, a(CPl) = (aia l) 
va(cpt)]Aa(cpt)' and a(cp2)=[a(a2)va(CP:)]Aa(cp~), thus 
to show that a(CPl)==a(CP2) we must show that a(a1)va(CPt) 
=a(a 2)va(CPt). The equality CPt=c2at +cla~ implies 

(
dCPt)1 /2 =(c )1 /2(daN /2 +(c )1/2{daN /2 
dp. 2 \dp.-, 1 'dp.") 

(note that a 1 1 A ( 2). Hence by (3) we conclude that 
a(CPt) < a(a 1)va(a 2). Consequentlya(a1)va(cpt) 
~ a(a1)va(a 2). From Eq. (1) we also obtain 

(c )l/ddaN/2 = (dCPt)1/2 -(c )1/2 (rJa 1V /2 

1 \dp., \dp. 2 \dp.! ' 

(1) 

which implies a(a 2) < a(CPt)va(a1), and consequently 
a(a 1)va(a 2) ~ a(CPi)va(a 1). This shows that a(a1)va(CPt) 
=a(a1)va(a 2). Similarly we show that a(a 2)va(cpt) 
=a(a 1 )va(a 2 ), and we obtain a(a 1)va(CPt)=a(a 2)va(cpt). 
Hence a(CP1)=a(CP2) and the map 1/1 is well defined. We 
now show that it is one-to-one. Let 1/I(f1] = 1/I(f2]' where 
f;=r j (dCP/dCP)1/2, rl*O. Be the definition of 1/1 we have 
a(CP1) =a(CP2). By (3) there are cP E M! and rE R such that 
(*) holds. If CPl *±CP2' we conclude that a(cp) < a(CPl) 
va(CP2) = a(CP1)' a contradiction. Hence CP1 =± CP2' which 
implies (f1]= (J2] and shows that 1/1 is one-to-one. We will 
show that 1/1 preserves orthogonality in W ~ L 2(R, p.). Let 
forf;=r;(dcp;/dp.)1/2, i=1,2, (f1]1(f2]' Le., 

J(!!!PJ.) 1/2 f!!:!h.)1/2 _ 
dp. \dp. dp.-O. 

By (3), there exist cP EM! and rE R such that (*) holds 
with r 1 = r 2 = 1//2. We will show then r=± 1. If we 
square (*) putting r 1 = r 2 = 1//2, we get 
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r2 dl cP 1= !. dl CPll + f!!!PJ.V/2 I.dIP 2.Y/2 + !. ~. 
dp. 2 dp. ,-dp."' ,dp. / 2 dIP 

After integrating and applying the Radon-Nikodym 
theorem (I cP I and I cP II are probability measures) we 
obtain 

r 2=-+ ::::I:.J.. ::::l:....Ol. dp.+-=l 1 f c'd<P )1/2 e'dCP )1/2 1 
2 dp. dp. 2' 

that is, r=± 1. By (3) we infer that a(CP1) 1 a(CP2)' i. e. , 
I/I[rl] 11/1(f2] and 1/1 preserves orthogonality. 

Denote the lattice of finite-dimensional subspaces of 
W by peW). We extend 1/1 to peW) as follows: if a E peW) 
and {e",} is the set of atoms (one-dimensional subspaces) 
included in a, we define I/I(a) = V",I/I(e",). We have to show 
that the so-extended 1/1 preserves the lattice operations. 
It is evident that I/I(avb):;;, I/I(a)vl/l(b). Suppose that [e] 
is an atom and [e] ~ av b. Then there are atoms (J] and 
[g] such that [r] ~ a, [g].,; b and [e].,; [r]v[g]. If e 
=r(dCP /dp.)1 / 2, f=r1(dCPl/dP.)1/2, g=r2(dCP2/dP.)1/2, this 
implies that condition (*) holds, and consequently by 
(3) l/I[e]<I/I[r]vl/l[g]~I/I(a)vl/l(b). Hence l/I(avb)";I/I(a) 
v I/I(b) , and finally I/I(avb) = I/I(a)vl/l(b). Since for a"; b 
E peW) we have b - a E peW) where al (b - a) and 
av(b - a) = b, and 1/1 preserves orthogonality, we con­
clude that for a.,; b I/I(b - a) = I/I(b) -I/I(a), i. e., 1/1 pre­
serves relative orthogonal complementation. Since for 
a,bEP(W) aAb=(aOvbO)O, where for x";avb XO 

= (avb) - x is the relative orthogonal complement in the 
interval [0, avb], we see that l/I(aAb) = l/I(a)AI/I(b). 
Hence 1/1 preserves the lattice operations. To show that 
1/1 is a monomorphism, observe that I/I(a) = ° implies 
a=O, and if l/I(a)=I/I(b), then l/I(a-aAb)=I/I(a) 
-1/I(a)AI/I(b)=O. Since a=(aAb)v(a-aAb) by ortho­
modularity, we see that a=aAb, Le., a";b. Similarly, 
b ~ a, so a= b. This ends the proof of the theorem. 

Concluding this paper we would like to note that al­
though the theorem of this paper is simpler than that of 
Gudder and Piron and accomplishes the main purpose 
of the latter by showing that Jj is an extension of R, the 
result is not as strong since their monomorphism is 
from the lattice of all finite dimensional subspaces of 
L 2(R, p.). 

'J. Jauch and C. Piron, Helv. Phys. Acta 42, 842 (1969). 
2M. J. Maczynski, Repts. Math. Phys. 3, (1972), in print 
3For the definitions of the involved lattice-theoretical terms see F. 

Maeda and S. Maeda, Theory of Symmetric Lattices (Springer, 
Berlin, 1970). 

4M. D. MacLaren, Pac. J. Math. 14,597 (1964). 
5C. Piron, Helv. Phys. Acta 47, 439 (1964). 
6S. Gudder and C. Piron, J. Math. Phys. 12, 1583 (1971). 
7See Ref. 2. 
8See Ref. 2. 
9See Ref. 6. 
lOR. Baer, Linear Algebra and Projective Geometry (Academic, New 

York, 1952). For a detailed proof, see V. S. Varadarajan, Geometry of 
Quantum Theory (Van Nostrand, Princeton, N.J., 1968), Vol. I., pp. 
36-42. See also Theorem 3 in Ref. 6. 

"See Ref. 2. 
12See Ref. 6. 
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In the first paper of this series, the notion of a manual of operations and its (generalized) sample 
space was introduced. For each such manual of operations, a so-called logic was constructed. In the 
present paper, some of the algebraic properties of such logics are identified with the corresponding 
operational properties of the manual. 

I. INTRODUCTION 

In the conventional theory of quantum phenomena1
-

3 

the connections with actual physical operations are, at 
best, vague. One need only examine the recent litera­
ture concerning the theory of measurement to appre­
ciate the extent to which this is S04-6,7; hence, it is not 
surprising that there have been numerous attempts to 
correct this situation. 8-12 The notion of a (generalized) 
sample space and its affiliated logics introduced in Part 
I of the present series13 provides a framework within 
which such attempts can be developed and analyzed. 

The theory we have built in (Ref. 13) not only pro­
vides for the formal representation of the underlying 
physical operations, but indeed, casts them in a funda­
mental role in the sense that one may actually start with 
a so-called manual of operations and construct from it a 
(generalized) sample space and thence a logic of propo­
sitions. We shall attempt in the present paper to trace 
down the operational Significance of some of the more 
important structural features that the logic of a sample 
space might possess. In this paper, we shall assume 
that the reader is familiar with the ideas presented in 
(Ref. 13). 

In order to emphasize the fundamental role played by 
coherent collections or manuals of operations, we shall, 
as promised above, formally abstract the notion of a 
manual from that of a sample space. Thus, let..tbe a 
nonempty collection of nonempty sets and let X = U....t. 
For X,YEX, say that x is orthogonal to Y and write 
xl Y provided that x"* y and there exists E E..t with x, y 
E E. If (X, l,...t) is a sample space, we agree to call ..t a 
manual. If..t is a manual, we refer to (x, l,...t) as the 
sample space corresponding to..t. Since this is a one­
to-one cor.respondence between manuals and sample 
spaces, we shall, for convenience, frequently fail to 
distinguish between a manual and its corresponding 
sample space as far as terminology is concer,ned. For 
instance, the outcomes and events for the sample space 
(X, l,...t) will also be referred to as ..t-outcomes and .A­
events; the manual..t of a Dacey sample space will be 
called a Dacey manual, and so on. Moreover, we shall 
even denote the logic rr (X, 1 ,..t) of the manual..t by rr(,A). 

II. CONJUNCTION AND DISJUNCTION 

The operational interpretation of the infimum and 
supremum of propositions in quantum logics is a dif­
ficult matter that has engaged the attention of many 
authors. 14-16 In the logic rr~ of a manual.A, such an 
interpretation is always available for the infimum and, 
when the logic rr(...t) is closed under the negation map-
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ping p(A) - (p(A»/, the supremum also admits an opera­
tional explanation. 

Let..tbe a manual and let {Allj EJ} be a family of 
events for this manual. If A is an event for..t, the nota­
tion p(A) = AJl(Aj) will be understood to mean that the 
family of propositions {p(A I) Ij E J} has an infimum 
(greatest lower bound) in the partially ordered set 
(I1(...t),~) and that p(A) is this infimum. Likewise, the 
notation p{B) = V Jl(A j) will mean that the fam~ly of prop­
ositions {p(A j) Ij E J} has a supremum (least upper 
bound) in (II~,~) and that p(B) is this supremum. 
Finally, the notation p(B) = ffi Jl(A j) will be understood to 
mean that the propositions in the family {p(A j) I j E J} 
are pairwise othogonal and that p(B) = v jJ(A j)' 

Let X be the outcome set for the manual..t and let E 
be any operation in..t. Clearly, p(\1I) = (\1I,X) is the in­
fimum of all of the propositions in rr(...t), while p(E) 
= (X, \11) is the supremum of all of these propOSitions. 
Thus, we define O=p(\1I) and 1 =p(E) and note that 
(rr(,A),~) is a bounded poset in that O~p(A)~ 1 holds for 
all p(A) E I1(...t). 

Theorem 1: The necessary and sufficient condition 
that p(A) = AjJ(Aj) is that All= nj(AI)ll. 

Proof: Suppose first that p(A)= AjJ(Aj)' Since p(A) 
~ p(A) for all j, then A ll<;;: (A j)ll for all j; hence, All 
<;;: nj(A)ll. Suppose XE nj(Aj)ll. Thenp({x}) ~p(Aj) for 
all j, whence, p({x}) ~ AjJ(Aj) =p(A), so XE{X}ll<;;:A ll• 
This proves that All= nj(A)U as desired. 

Conversely, suppose that A ll= n I(A j)ll. Evidently, 
then, p(A) is a lower bound in (II(...t),~) for the family 
{p(AJ) Ij E J}. Suppose that p(D) is another propOSition in 
rr(,A) which is also a lower bound for this family. Then 
DH<;;: n j(Aj)ll=A ll; hence, p(D) ~ p(A). This shows that 
p(A) is indeed effective as the greatest lower bound of 
{p(A j) I j E J} and completes the proof. 

In conventional logic, the conjunction of a set of prop­
ositions is generally understood to be a proposition that 
is true if and only if each of the propositions in the set 
are true. As a consequence of Theorem 1, we see that 
in the logic rr(.A), 1\ jp(A j)' if it exists, is precisely that 
propOSition which is confirmed by an outcome if and on­
ly if each of the propositions p(Aj) are confirmed by this 
outcome. Consequently, we feel entitled to call A jp(A;> , 
when it exists, the conjunction of the propOSitions in the 
family {P(Aj)ljEJ}. In conventional logic, it is a the­
orem that the conjunction of a set of propositions is 
false if and only if at least one of the propositions in the 
set is false. Suppose that we have p(A) = A jJ(A) in our 
logic rr(...t). As a consequence of Theorem 1, we see that 
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p(A) is refuted precisely by those outcomes in the set 
(nj(Ai)ll).L=(U j(Aj).L)ll. Since for any particular i E J, 
(Ai).L~ (u j(Aj).L)ll, then any outcome that refutes anyone 
of the propositions in the family {p(A i) Ij E J} will refute 
the conjunction p(A). However, our conjunction need not 
behave classically in that there may be outcemes in 
(U j(A ).L)ll that refute p(A) but do not belong to U j(A i).L 
and, hence, do not refute any of the propositions in the 
family {P(Aj)ljEJ}. 

Consider, for instance, the propositions p({b,n}) 
= (p({a}», = ({b, n}, {a}) and p({c,n}) = (p({d}»' = ({c, n}, {d}) 
in the logic rr'-'t} of the manual.4={{a, b, n}, {c, d, n}} of 
(Ref. 13, Example m). The conjunctionp({b,n}) 
I\p({c, n}) is given by p({b, n}) I\p({c, n}) =p({n}) = ({n} , 
{a, b, c,d}). Notice that this conjunction is refuted not 
only by outcomes a and d, as it would be classically, 
but also by outcomes b and c, neither of which refute 
either p({b,n}) or p({c,n}). If we consider the physical 
situation described in Example m,13 we find that the 
above departure from classical logic is virtually forced 
upon us. 

In conventional logic, the disjunction of a set of prop­
ositions is generally understood to be a proposition 
which is true if and only if at least one of the proposi­
tions in the set is true. This suggests the following 
definition: Let {Ai Ij E J} be a family of events for the 
manual .4 and let A be an event for.4. We shall say that 
the proposition p(A) is the disjunction of the proposi­
tions in the family {p(A j) Ij E J} if and only if p(A) is con­
firmed precisely by those outcomes that confirm at 
least one of the propositions in the family {p(A j) Ij E J}. 
This simply requires that A ll= U j(Aj)ll. 

Theorem 2: LetAj be an event for the manual.4for 
each j E J and let A be an event for.4 such that p(A) is 
the disjunction of the propositions in the family 
{p(Aj)ljEJ}. Thenp(A)= vjp(Aj). 

Proof: We have A.l.L= Uj(Aj).L.L, from which it is clear 
that p(A) is an upper bound in (rr'-'t},";;) for the family 
{p(A;> Ij E J}. Suppose that B is any event for.4 such that 
p(B) is also an upper bound for this family. Then, for 
eachj EJ, (Aj).L.L~B.L.L; hence, All= Uj(Aj).L.L~B.L.L, that 
is, p(A).,;; p(B). This shows that p(A) is effective as the 
supremum of the propositions in the family {P(A/) Ij E J} 
and completes the proof. 

If we glance again at the manual.4={{a,b,n},{c,d,n}} 
of (Ref. 13, Example III), we see, for instance, that 
p({b,n}) is the disjunction of the two propositions P({b}) 
and p({n}); hence, by Theorem 2, P({b, n}) =p({b}) v p({n}). 
However, note carefully thatp({a,b})=({a,b,c,d},{n}) 
=P({a}) VP({b}); but, p({a,b}) is clearly not the disjunc­
tion of the propositions p({a}) and P({b}). Thus, every 
disjunction in the logic of a manual is a supremum, but 
the converse is false. 

Suppose that.4 is a manual whose lOgic is closed 
under the negation map p(A) - (p(A»'. Then, the nega­
tion map is an antiautomorphism of period two on the 
structure (II'-'t), ";;); hence, trivially, it converts 
suprema into infima and vice-versa. Consequently, we 
have the conventional deMorgan laws: (vjP(Aj»' 
=A;(P(Aj»' and r,;P(Aj»'=vAP(Ai»'. In particular, if 
p(B) ==VjP(Aj), then p(B) == ri(p(Aj»')" Since we already 

J. Math. Phys., Vol. 14, No. 10, October 1973 

1473 

have an operational interpretation for the infimum as a 
conjunction, this provides us with an operational inter­
pretation for the supremum. Specifically, we have the 
following theorem: 

Theorem 3: Suppose that.4 is a manual whose lOgic is 
closed under the negation mapping. Let {A j I j E J} be a 
family of events for.4. Then, the necessary and suffi­
cient condition that p(B) =v,;P(Aj) is thatp(B) is refuted 
by precisely those outcomes for.4 that refute every 
proposition p(A i)' j E J. 

As the following example shows, one has, in general, 
no guarantee of the existence of suprema and infima in 
the logic rr'-'t} of a manual.4. We should like to thank 
M. F. Janowitz for calling this simple example to our 
attention. 

Example IV: Let.4=={{a, b, c,}, {c,d, e},{e,f,g}, 
{g, h, a}}. Then .4is a Dacay manual, but the supremum 
ofp({a}) andp({e}) does not exist in the logic rrlot). Also, 
the infimum ofp({b,c}) andp({c,d}) does not exist in this 
logic. 

We shall say that a manual.4is conjunctive provided 
that given any two propositions p(A) and p(B) in the logic 
rr""), there exists a proposition p(C) E rr'-"> such that 
p(C) =P(A) Ap(B). If every countable family (respec­
tively, every family) of propositions in rr'-'t} has an in­
fimum, we shall say that the manual JI is (1-conjunclive 
(respectively, completely conjunctive). Notice that if the 
lbgic rr~ is closed under the negation map p(A) 
- (p(A»', then JI is conjunctive if and only if every pair 
of propositions in rr~ have a supremum in rr~. (This 
follows immediately from the deMorgan laws. ) Similar 
remarks hold for the (1-conjunctive and completely con­
junctive cases. 

Although many authorsI5.17.18 impose conjunctivity 
axiomatically on quantum logics, Example IV shows 
that, in general, the operational logic rr'-"> of a manual 
need not enjoy this property. Moreover, as the follOwing 
theorem shows, the imposition of conjunctivity-even in 
the case of a completely coherent Dacey manual-is 
equivalent to a rather technical operational condition: 

Theorem 4: Let Jibe a completely coherent manual. 
Then, the necessary and sufficient condition that JI be a 
conjunctive Dacey manual is the following: If D is an 
event such that p(D) is neither confirmed nor refuted by 
an outcome x, then, there exists an outcome y which 
refutes p(D) and which operationally rejects every out­
come z that refutes both p(D) and p({x}). 

Proof: The given condition is equivalent to the follow­
ing: Given an orthogonal set D and an outcome xEtD.L 
U D.L.L, it follows that D.L n ( {x}.L n D.L).L* 1/1. Reference to 
(Ref. 19, Theorem 1) completes the proof. 

Similarly we have the follOwing theorem: 

Theorem 5: If .4 is a conjunctive, completely coherent 
Dacey manual, then it is completely conjunctive and 
every closed generalized proposition belongs to the logic 
rr~. 

As Theorem 4 shows, the existence of infima and 
suprema, in general, is a delicate matter. However, the 
question of the existence of orthogonal suprema is more 
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tractible. In fact, it is clear from the discussion pre­
ceeding Lemma 6 in (Ref. 13) that the coherence of the 
manual...t' guarantees the existence of finite orthogonal 
suprema. We shall say that the logic rr(.4) is orthocom­
plete (respectively, a-orthocomplete) if and only if 
every orthogonal family (respectively, every countable 
orthogonal family) of propositions in rr{...st) has a su­
premum. Evidently, rr(...t) is orthocomplete (respective­
ly, a-orthocomplete) if.A is completely coherent (re­
spectively, a-coherent). In fact, if {A,ljEJ}iS an or­
thogonal family of events for.A such that A =U ;ij is also 
an event for...sf, then p(A) =EPsP(Aj)' Notice, however 
there exist manuals...t' that are not a-coherent, but 
whose logics rrM are even a-complete Boolean 
algebras. 

III. NEGATION AND DACEY MANUALS 

Conventionally, if a logic contains a proposition, then 
it also contains the negation of that proposition. In 
Example V we shall see that this need not be the case 
for an operational logic. To begin with, let D be an 
event for a manual..J; then p(D) = (D.u.,D l ) is a proposi­
tion in its logic (II(.,t),";,1). The negation of such a prop­
osition p(D) has been defined, in (Ref. 13), to be p(D)' 
= (DL,D.u.). Evidently, if p(D)' is to be a member of 
rr(.A'), there must exist another event B such that 
B.u.=D\ 

A natural place to look for such an event B is among 
the "local complements" of the event D; that is, look 
among those E\D for which E is an operation in...t' con­
taining D. Notice that p(E\D) is a complement of p(D) in 
(II (.4),,,;) and in fact an orthogonal complement; that is 
p(D) Ip(E\D) and p(D) /\p(E\D) = 0, p(D) Vp(E\D) =p(E) 
= 1. Moreover, all orthogonal complements of p(D) are 
of this form. If p(D)E9p(B) = 1, then p(D U B) = 1, (D U B)l 
= (jJ and thus (D U B) E...t' and we have the following 
lemma: 

Lemma 1: Let Band D be events for a manual...t'. Then 
p(D) tB p(B) = 1 if and only if B = E\"D for an operation 
E E ..Jcontaining D. 

We shall now show that when p(D)' is in II{...st), it has 
the prescribed form. Suppose p(D)' =p(B) for some 
event B and consequently that Dl = B.u.. It follows that 
D 1 B and by coherence that DUB is an event for..J. 
Moreover (DU B)" = fl1 n B" = Bll n B" = ¢ and hence 
(D U B) E..J. Thus we have proved the following lemma: 

Lemma 2: Let D be an event for a manual..Jsuch that 
p(D)' E II(.A'). Then p(D)' =p(E\..D) for some operation E 
containing D. 

In spite of the apparent good behavior of these local 
complements, we can still have manuals with logics 
that are not closed under negation. Consider the follow­
ing example: 

EXample V: Let..J={{a,b},{b,c},{c,d},{d,e}}. Since 
{c} is an event for the manual..J, p({c}) = ({c}, {b,d}) 
Err0t). However, as is now easily verified, the negation 
p({c})'=({b,d},{c}) is not a member of rr{...st). 

If a logic rr44) is closed under the negation map, then 
the restriction of this map to rrM is effective as an 
orthocomplementation, (Ref. 20, p. 52). Indeed, 
Lemma 5 shows such a map to be a complementation 
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and it has been noted that the negation map is an involu­
tory order antiautomorphism. Thus, when II~ is 
closed under negation, the system (rrM,,,;,') is an 
orthocomplemented poset (Ref. 23, p. 70). As a conse­
quence, we shall define a manual to be an orthocomple­
mented ma!lUal when its logic is closed under negation. 

Naturally we would prefer to have all of the local ne­
gations p(E\..D), that arise from the local complements 
of an event D, equal to the global negationp(D)'. As the 
follOwing example shows, this need not be the case even 
for an orthocomplemented manual. 

Example VI: Let...t'={{a,b},{b,c},{c,d}}. It is easy to 
verify that ...t'is an orthocomplemented manual. Evident­
ly, we havep({b})'=({a,c},{b})=p({a}). On the other 
hand, {c} is a local complement of {b}, but p({c}) 
=({c}, {b,d})*P({b})'. 

The following theorem states that these desired equal­
ities are in fact equivalent to a number of other inter­
esting and familiar conditions; for instance condition 
(ii) is satisfied whenever...t' allows suffiCiently many 
complete stochastic models, that is, whenever IIM 
admits a full set of regular states. Moreover, most of 
the proposed "quantum logics,,12,15-18,21,22 are required 
to be orthomodular po sets (Ref. 23, p. 70) and thus sat­
isfy condition (v). 

Theorem 6: Let...t' be a manual. Then the follOwing are 
equivalent: 

(i) If A, Band C are events for...t' and p(A) tB p(E) 
=1 andp(A)tBp(C)=1, thenp(B)=p(C). 

(ii).A is a Dacey Manual. 

(iii) If A and B are events for...t' for which A t;;; Bl and 
AlnB1=(/J, thenA"=B H

• 

(iv) If A and B are events for...t' such that A t;;; B\ then 
there exists an event C for...t' for which A t;;; C t;;; CH=Bl. 

(v) The system (II 44), ";,') is an orthomodular poset. 

Proof: (i) =* (ii): Assume (i) and let E E..J and x, Y E X 
be such that Et;;;{X}lU{y}\ We must show xly. SetA 
=E n {X}l and B=E\..A so that p(A)E9p(B) =p(E) = 1, 
xEA"and YEB1. Coherence forces the existence of an 
operation GE...sfwithA u{x}t;;;G. Set C=G,\A and note 
thatp(A)E9p(C)=p(G)=1 and XEC. By (i), p(C)=p(B), 
so YEB1=Clt;;;{X}\ proving that xly as required. 

(ii) =* (iii): Assume (ii) and the hypothesis of (iii). By 
coherence, there exists an operation E E ...t'with 
AUBt;;;E. SinceE,,(AUB)t;;;(AUB)1=A1nB"=(/J, then 
AU B =E. Also, since A ~Bl, we have BlJ.~A \ To show 
thatA"t;;;B ll

, we assume that xEA1 and that YEB1 and 
argue that xl y as follows: E =A U B ~ {X}" U {y}\ hence, 
x ly by (ii). Thus, we have A1=B11 as desired. 

(iii) =* (i v): Assume (iii) and the hypothesis of (iv). By 
coherence, there exists an operation E E ..Jwith 
A UB~E. Set C=E\,B, noting that C~Bland C1n B" 
=E1=(jJ; hence, that Cll=B1by (iii). Clearly, 
At;;;C~Cll=B". 

(iv)=* (v): If B is any event, then, since (/J t;;; B\ (iv) 
forces the existence of an event C with Cll=BL, so that 
(p(B»'=p(c)ErrM. As we have seen, this implies that 
(II{...st), ,,;, ') is an orthocomplemented poset. 
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Suppose now that A and B are events with peA) ~ pCB). 
We must prove the orthomodular identity pCB) = peA) EEl 
[p(A)EEl(p(B»'l', that is, p(B) =p(A) EEl [(p(A»'Ap(B)]. 
Choose an event C such that p(C) =p(A) EEl [(p(A»'Ap(B)l 
and note that p(c) ~ pCB). By an argument given below, 
we can assume without loss of generality that C C B. We 
now have 

p(C) EEl (p(B» , = [peA) EEl (p(B»'] EEl [peA) EEl (p(B» '1' = 1; 

hence, (p(C»'Ap(B) =0 by deMorgan's law. This yields 
C"nBH=\IJ, which, together with CCB, implies that 
C=B, so that p(C) =p(B) as desired. 

For the promised argument, suppose that peA) ~ p(D) 
for events A and D, so that A CA 11 C Dll. Since II ~ is 
closed under negation, D11=K" for some event K. Con­
dition (iv) now requires the existence of an event C with 
A C C C CH=K"=DJ.\ so we have p(D) =p(C);;;, peA) and 
actually A C C. 

(v) ~ (i): Assume (v) and let A and B be events for 
whichp(A)EElp(B)=1. Thus, from (v), p(B)~ (p(A»' and 
(p(A»' = p(B) EEl [peA) EEl pCB) l' =p(B) EEl l' =p(B) EEl 0 =p(B). 
Consequently, (i) holds, and the proof is complete. 

It now follows that the logic of a conjunctive Dacey 
manual is an orthomodular lattice (Ref. 20, p. 53); 
hence, the logic of a a-coherent conjunctive Dacey space 
is a a-complete orthomodular lattice. It follows from 
(24) that if.At is a O"-coherent conjunctive Dacey manual 
in which every operation is at most countably infinite, 
then the logic II(....t) is a complete orthomodular lattice. 

IV. COMMUTATIVITY AND TESTABILITY 

In the study of quantum logics, the notion of commuta­
tivity (or compatibility) plays a crucial role. For exam­
ple, in the orthomodular lattice of all orthogonal pro­
jection operators on a Hilbert space, two elements P 
and Q commute in the sense presently to be defined if 
and only if PQ - QP = O. In this section, we shall show 
how commutativity in the logic II44) of a manual.At is 
intimately connected with the notion of testability in­
troduced in Ref. 13. 

Let.Atbe a given manual. FollOwing Mackey (Ref. 21, 
p. 70), we shall say that two propositions peA) and pCB) 
in II(.4) commute, and write peA) C pCB), provided that 
there exist three mutually orthogonal events Ai> BI and 
D with peA) =p(A1) EElp(D) and pCB) =p(B1)EElp(D). Recall 
from Ref. 13 that two events A and B are said to be com­
patible if there exists an operation E E.At such that 
A U B C E. Clearly, if A and B are compatible events, 
then peA) C pCB), for it is only necessary to take Al 
=A "B, BI =B"A and D =A n B in the above definition. 

Theorem 7: Let A and B be events for the manual.At. 
Then, the necessary and sufficient condition for peA) 
C pCB) to hold is that there exist compatible events Ao 
and Bo such thatp(A)=p(Ao) and p(B) =p(Bo). 

Proof: The remark preceding the theorem establishes 
the sufficiency. Conversely, suppose that 
peA) =p(A1)EElp(D) and p(B) =p(B1) EElp(D) , where Au BI 
and D are mutually orthogonal events. By coherence, 
there exists an operation E E.Atwith Al U Bl U D C E. Put 
Ao =AI U D, Bo = BI U D, and note that Ao and Bo have the 
requisite properties. 
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Corollary 1: Let.Atbe a manual and letp(A), 
pCB) E II~ with peA) C pCB). Then, the operational 
propositions peA) and pCB) are simultaneously testable. 

Proof: By Theorem 7, we can suppose, without loss 
of generality, that A and B are compatible, so that there 
exists an operation EE.AtwithA UBCE. By (Ref. 13, 
Lemma 5), E is effective as a test operation for both 
peA) and pCB), and the proof is complete. 

The converse of Corollary 1 is, in general, false. 
For instance, consider the manual.At= {{a , b}, {b, c}, 
{c,d}} of Example VI. A simple computation revealS, 
that the operation E ={b, c} is effective as a simulta­
neous test operation for all of the propositions in the 
logiC II~; however, p({a}) fails to commute with p({d}) 
in the logic II4-tst). The next theorem shows, among 
other things, that such anomalous situations do not arise 
for a Dacey manual. 

Theorem 8: Let A and B be events for a Dacey manual 
.At. Then: 

(i) An operation E E.Attests the proposition peA) if and 
only if there exists an event DC E with peA) =p(D). 

(ii) peA) C pCB) if and only if peA) and pCB) are simul­
taneously testable. 

(iii) peA) 1 pCB) if and only if peA) and pCB) are simul­
taneously testable and disjoint. 

Proof: (i) If there exists DC E with peA) =p(D), then 
it is clear from (Ref. 13, Lemma 5) that E tests peA). 
Conversely, suppose that E tests peA), that is, 
ECA llUA ". Put D =A 11n E, and note that DC E and that 
p(D)~p(A). To prove thatp(D)=p(A), it will suffice to 
prove that D"CA ". To this end, we shall assume that 
xED 1 and that a E A and argue that x 1 a. Since.At is a 
Dacey manual, it will be enough to show that E C {X}" 
U{a}". But, ECDUA"C{x}"U{a}\ and our argument is 
complete. 

(ii): This follows immediately from Corollary 1, 
Theorem 7 and part (i) of the present theorem. 

(iii): Recall that peA) and pCB) are said to be disjointl3 

ifA 11 nBll =\IJ, that is, if p(A)Ap(B) =0 in II~. 
Obviously, orthogonal propositions are disjoint and, by 
coherence and (Ref. 13, Lemma 5), orthogonal propo­
sitions are Simultaneously testable. Conversely, if 
peA) and pCB) are disjoint and simultaneously testable, 
then, by part (ii) of the present theorem, peA) C pCB) 
and P(A)AP(B) = O. It is well-known, and easy to check, 
that in an orthomodular poset, the latter two conditions 
imply peA) lp(B). Since, by part (v) of Theorem 6, 
II0t) is an orthomodular poset, our proof is complete. 

We have shown in (Ref. 13, Lemma 5) that every 
proposition in IIlot) is closed and testable. Suppose that 
.Atis a Dacey manual and that (A,B) is a closed and test­
able operational proposition for.At. Then A "= B, B.L=A 
and there exists an operation E E.Atsuch that E CA U B. 
If we now put D = E n B", and argue as in Part (i) of 
Theorem 8, we conclude that p(D) = (A, B), so that 
(A, B) E II(.Af). Thus, we have the follOwing result: 

Theorem 9: The logic II~ of a Dacey manual con­
sists precisely of the closed and testable operational 
propositions over.At. 
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Let..4 be any manual. If Q is any subset of IIM, we 
define the com mutant of Q, in symbols C(Q), to be the 
set of all those propositions in IIM that commute with 
all of the propositions in Q. In particular, the center 
of II(..t) is defined to be C(II(.A). Notice that ° and 1 
always belong to the center of II(..4). Barbara Jeffcott25 
has shown that the center of rr(.,t) is always closed under 
the negation mapping p(A) - (p(A» I and has proved the 
following theorem: 

Theorem 10: If..4is any manual, then the center of 
II4A') forms a Boolean algebra 

(C(II(.A), "':, '). 

Following customary usage, we shall say that the 
manual..4 [or the logic II (.A) ] is irreducible provided that 
C(II(.A) ={O, 1}. We note that the existence of quantum 
mechanical superselection rules is equivalent to the con­
dition that the logic of quantum mechanics is reducible 
(that is, not irreducible), (Ref. 21, p. 136). In a later 
paper, we shall show that a manualoA is reducible if and 
only if it can be "factored" as a "product" of "Simpler 
manuals". In the extreme case in which C(IIM) = II (..4) , 
that is when II44) is a Boolean algebra itself, we shall 
say that oA is a Boolean manual. Notice that the manual 
given in Example I of (13) is a Boolean manual. As a 
corollary of Theorem 10, we have the following: 

Corollary 2: Let..4 be a manual. Then, the following 
conditions are mutually equivalent: 

(i) oAis a Boolean manual. 

(ii) II(..4) is closed under the negation mapping and the 
system (II44),,,,:,') forms a Boolean algebra. 

(iii) Any two propositions in rrM commute. 

(iv) ..4 is a Dacey manual and any two propositions in 
II(..4) are simultaneously testable. 

V. SUBLOGICS AND SUBMANUALS 

In the following theorem we collect the characteristic 
properties of the logic of a manual: 

Theorem 11: Let..4 be a manual. Then the logic 
(II 4A') , ",: , 1) has the following propertie s : 

(i) rr(..4) is partially ordered by ",: and, for every 
p(A) E IIM, 0",: p(A)",: 1. 

(ii) The relation 1 is symmetric on IIM and, for 
p(A) E II~, p(A) 1p(A) implies that p(A) = 0. 

(iii) If p(A), p(B) E II(.A) with p(A) 1p(B), then the 
supremum p(A) EBp(B) exists in (II (..4) , "':). 

(iv) If p(A), p(B), p(C) E II(.4) with p(A) 1p(B), 
p(A)lp(C) andp(B)lp(C), thenp(A)l(p(B)EBp(C». 

(v) If p(A) E II (.A) , there exists p(B) E II(..t) with 
p(B) 1 p(A) and p(A) EB p(B) = 1. 

(vi) If p(A), p(B) E II4A'), then p(A)"': p(B) if and only 
if, for every p(C) E II (..4) , the condition p(C) 1p(B) im­
plies the condition p(C) 1 p(A). 

One can actually show that an abstract system 
(L,"':,l) satisfying conditions (i)-(vi) above is isomor­
phic to the logic of a suitable manual. 
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Motivated by the above considerations, we define a 
sublogic of the logic rr(..4) to be a subset L of II(..4) satis­
fying the following conditions: 

(i) 0, 1EL. 

(ii) Ifp(A), p(B)EL withp(A)lp(B), thenp(A) 
EBp(B) E L. 

(iii) If p(A) E L, there exists p(B) E L with p(A) 1p(B) 
and p(A) EB p(B) = 1. 

(iv) If p(A), p(B) ELand if, for every p(C) E L, the 
condition p(C) 1p(B) implies the condition p(C) 1p(A), 
then p(A)",: p(B). 

Notice that if L is a sublogic of II~, then the system 
(L,"':,l) inherits properties (i)-(vi) of Theorem 15. We 
now have the following easily proved result: 

Lemma 3: Let oAbe a Dacey manual. Then a subset L 
of II(.A) is a sublogic if and only if it satisfies the follow­
ing conditions: 

(a) 0, 1EL. 

(b) Ifp(A), p(B)EL withp(A)lp(B), thenp(A) 
EBp(B) EL. 

(c) Ifp(A)EL, then (p(A»'EL. 

In particular, if L is a sublogic of II~, then (L,"':,') is 
an orthomodular poset. 

Since properties (a), (b),. and (c) of Lemma 3 are 
closure properties, then if..4 is a Dacey manual, the 
intersection of any family of sublogics of rr~) is again 
a sublogic of II(.A). 

Let..4 be any manual. A sublogic L of rrM will be 
called a Boolean sublogic of rr~ if it satisfies the fol­
lOwing condition: Given p(A), p(B) E L, there exist 
p(A1), p(B1), p(D) EL with p(A) =p(A1)EBp(D), p(b)=p(B1) 
EBp(D) and p(A1) 1p(B1). Note that this condition implies 
that p(A) commutes with p(B) in the logic II~); however, 
in general, elements of a sublogic L of II~ can com­
mute in rr~ without satisfying this condition as the 
following example shows: 

Example VII: Let..4 be the classical manual consisting 
of the single operation E ={a, b, c,d}. Let L 
={O, p({a,d}), p({b,c}), p({c,d}), p({d,a}), 1}. HereoA 
is a Boolean manual, rrl4) is the 16-element Boolean 
algebra and L is evidently a sublogic of rr~). However, 
L is isomorphic to the "horizontal sum" of two Boolean 
algebras of order four; hence it is not a Boolean 
algebra. 

Even though a sublogic of the logic of a Boolean man­
ual need not be a Boolean sublogic, it does follow, from 
Corollary 2, that a Boolean sublogic L of the logic of 
any manual is a Boolean algebra in its own right. More­
over, as the next easily proven lemma shows, there is 
one such Boolean sub logic naturally associated with each 
operation E in the manual..4. . 

Lemma 4: Let E be an operation in the manual..4. 
Then {p(D) IDe E} is a Boolean sublogic of IIM which is 
isomorphic to the Boolean algebra of all subsets of E. 

It follows from Lemma 4 that, for any nonempty sub­
collection ;m: of the manual..4, the subset rr(;m:,..4) 
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= {p(D) I D k: E for some E E;m} is the union of a collec­
tion of Boolean sublogics woven together within the logic 
n~. However, n(;m,A) need not be a sublogic-let 
alone a Boolean sublogic-of n~. As we shall see 
below, certain mild and natural assumptions on A and 
9n will guarantee that rr(;m,A} is at least a sublogic of 
n~. 

LetA be a fixed manual. We naturally define a sub­
manual of.A to be a nonempty subcollection :m: of.A which 
is a manual in its own right. Let X and M denote the out­
come sets of.4 and ;m: respectively and let 1 and # de­
note the relations of operational rejection induced on X 
and M respectively by.A and ;m:. Evidently, any :m:-event 
Dk:M is automatically anA-event and for x,yEM, 
x#y"*xly. If D is an ;m:-event, we denote the proposi­
tion (D## ,D#) E n(:m:) corresponding to D by Po(D) 
= (D##,D#). As usual, if A is anA-event, we denote the 
proposition (A H,A.L) E n~ by p(A). 

It might be expected that if ;m: is a submanual of JI, 

then rr(:m:,.,t) would be a sublogic of n~ isomorphic to 
rr (:m:) under a correspondence Po(D) ~ p(D). However, 
this does not obtain in general because of the weak con­
nection between 1 and #. Thus, let us say that a sub­
manual ;m; of.A is an induced submanual provided that, 
for x,YEM, x#y ~ xly. For our purposes, it is not 
quite sufficient merely to assume that ;m: is an induced 
submanual of A; we must also impose on the parent 
manualJl a condition that we have found desirable in 
other connections, namely, that.Abe a Dacey manual. 
We now have the following theorem: 

Theorem 12: Let :m: be an induced submanual of the 
Dacey manual.A and let A and B be il11-events. Let M 
= u:m: and let # be the relation of operational rejection 
induced on M by:m:. Then: 

(i) 9n is a Dacey manual. 

(ii) A # ==A .J. n M. 

(iii) A H= A #.L. 

(iv) A##==A HnM. 

(v) A.L= A##.J.. 

(vi) Po(A) ~ po(B) ~ p(A) ~ p(B}. 

(vii) n(;m;,.A) is a sublogic of rr{.A) isomorphic to 
rr(il11) under the correspondence Po(A) - p(A). 

Proof: (i) Let E E;m; and suppose that x, y E M with 
Ek:{x}#U{y}#. Since {x}#k:{xF and {Y}#k:{Y}-L, it follows 
that E k: {x}.J. U {y}.J.. Since.A is a Dacey manual and 
E E mt k:A, the latter condition forces xl y; hence, since 
;mis an induced submanual of .A, we have x#y. Thus, 
;m: is a Dacey manual. 

(ii): Since ;m: is an induced submanual of A, then # is 
precisely the restriction to M of the relation 1 on X; 
hence, (ii) follows immediately. 

(iii): Since mt is a Dacey manual by (i) above, then, by 
Theorem 6, there exists an il11-event C such that C## 
=A#. It follows thatA#C and that A U CE;m:; hence, 
that A 1 C and AU C EA. Since .A is a Dacey manual, 
Theorem 6 implies thatAH=C.L. Since, by (ii) above, 
A#k: A..., then A uk: A#.J.==C##J.k: C.L= All; hence, A H 
=A#J.. 
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(vi): Using (ii) and (iii) above, we produce the follow­
ing chain of implications: Po(A) ~ Po (B) =>B#r;;;;A # ~ 
A#J.r;;;;B#J.~A Hr;;;;BH ~ p(A) ~ p(B)~BJ.r;;;; A J.=9BJ.n M 
k: A J. n M~B#k: A #~ Po(A)~Po(B). 

(vii): By (vi), the correspondence Po(A) - p(A) is a 
well-defined order isomorphism which clearly pre­
serves orthogonality. By the argument in part (iii), 
there exists an ;m:-event C such that A J.J.= CJ.; hence, 
(p(A» I =p(C) E n(:m:,A), that is rr(:m:,.,t) is closed under 
the negation map and it easily follows that n(;m:,A) is a 
sublogic of rr(..J). The proof is complete. Notice that 
conditions (ii) and (iv) of Theorem 12 specify that the 
proposition Po(A) is confirmed (respectively, refuted) 
by precisely those outcomes in M that confirm (respec­
tively, refute) the corresponding propositionp(A}. 

Given a manual.A, it is now natural to inquire 
whether every sublogic of n(.4) is of the form rr(;m:,.4} 
for some induced submanual ;m: of A. Consideration of 
the classical case in which A consists of a single opera­
tion quickly reveals that the answer is no. However, for 
the Boolean manual A of example 113 it does turn out that 
every sublogic is so induced. As we shall see, this is 
a consequence of the fact that every nonzero proposition 
in the logic n(.4) of the manual A of example I is 
elementary in sense that it can be written in the form 
p({x}) for some outcome x. Thus, let us define an 
elementary manual to be a manual A such that every 
nonzero propOSition in rr~) is elementary. It turns out, 
as we shall see in Example IX in the next section, that 
the condition that a manual be elementary can always 
be satisfied in practice. 

Theorem 13: Let A be an elementary manual and let 
L be a sublogic of n'-"'). Let.AL = {E EJlI for every 
D k: E, p(D) E L}. Then JlL is an induced submanual of 
A, AL is an elementary manual in its own right, and 
rr (JluJlt) == L . 

Proof: Since 1 ELk: rr (.JSt) and.A is elementary, there 
exists an outcome e for.A with p({e}) == 1. Hence, 
{e} E.ALJ so.AL is not empty. We now claim that if 
A k: E E.AL and B k: F E.AL with AlB, then there exists 
G E.AL with AU Bk: G. In fact, since p(A) Ip(B} with 
p(A), p(B) E L, then, since L is a sublogic of rr~, we 
must have p(A U B) =p(A) EBp(B) E L. Moreover, there 
exists an event C with p(C) ELand p(A U B) EB p(C) = 1. 
Since .A is elementary, there exists an outcome c for .A 
withP(C)=p({c}). Put G=AUBU{c}, and note that 
G E A. In order to show that G E JlL , we choose any 
Dk:G. Thenp(D)=p(DnA)EBp(DnB)EBp(Dn{c}). Since 
D n {c} is either empty or equal to {c}, then p(D n {c}) 
belongs to L along with p(D n A) and p(D n B). Since L is 
closed under finite orthogonal jOins, it follows that 
p(D)EL; hence, GEAL as required. Put XL=U.AL and 
define, for x, y E XL' x# y#x* y and there exists 
E EAL with x,YEE. "Note that x#y~xly; hence, for 
A, B k: XL' A # B~A 1 B. The coherence of AL is now an 
immediate consequence of the above claim, so JiL is a 
sub manual of .A. To show that .AL is an induced sub­
manual of .A, we choose x, y E XL with xl y. In the above 



                                                                                                                                    

1478 C.H. Randall and D.J. Foulis: Operational statistics. II 

claim, again, letA =={x}, B=={y} and conclude that x#y. 
Now, to show that...lL is elementary, let D be an.Jllt'L­
event. Thus, there exists E E...IL with D <:;;; E. Since.Jllt' is 
elementary, there exist outcomes x and y for...l with 
p({x})==p(D)EL andp({y}) ==p(E,D) EL. Evidently, {x,y} 
E.A. As in the proof of the above claim, {X,Y}E.AL, so 
x E XL' Since...lL is an induced submanual of ...I, then x# 
==xJ.nXL==DJ.nXL==D#. Consequently,...IL is an elemen­
tary manual. 

Clearly, II(...IL,...t) <:;;; L. Conversely, choose p(A) E L, 
where A is an ...I-event. There exists an ...I-event B with 
p(B)EL and p(A)EBp(B) ==1. As above, there exist out­
comes a and b for.Awithp({a})==p(A) andp({b})==p(B) 
and so {a, b}E...IL• Hence, p(A) ==p({a}) E II (.AL,JIf) , and 
the proof is complete. 

VI. REFINEMENT AND COARSENING OF 
OPERATIONS 

As we pointed out in (Ref. 13), a manual of physical 
operations is often treated classically by imagining that 
there exists a single "grand canonical operation" that­
in some sense-simultaneously refines all of the opera­
tions in the given manual. "Hidden variable theories" 
could be interpreted as attempts to secure such an 
operation. 26-28 The notion of refinement, as well as the 
converse notion of coarsening, will be introduced for­
mally in the present section and some of its basic prop­
erties will be explored. 

Let E and F be operations in the manual.A. We shall 
say that F refines E relative to the manual.Aand write 
E ~ F provided that for each outcome e E E there exists 
an event D <:;;; F such that p({e}) ==p(D). If E ~ F, we shall 
also say that E is a coarsening of F. 

Example VllI: Let Z be a nonempty set. By a partition 
of Z, we mean, as usual, a collection {Z j I j E J} of non-, 
empty subsets of Z such that Z I n Z j == I'l for i, j E J with 
i *" j and such that Z = U {Zj! j E J}. Let.A be the set of all 
partitions of Z. Then.A is a Boolean manual and, for 
E, FE.A, E ~ F if and only if the partition F refines the 
partition E in the customary sense that every set in E 
is a union of sets in F. Notice that the operation Z* 
={{z}! Z E Z}E ...tis effective as a common refinement of 
all of the operations in the manual...t. 

Theorem 14: Let.Jllt'be a manual and let E,FE.A. Con-
sider the following conditions: 

(i) E ~ F. 

(ii) A <:;;; E~there exists B <:;;; F with p(A) ==p(B). 

(iii) II ({E},...I) <:;;; II({F},...I). 

(iv) F tests p(D) for all D <:;;; E. 

(v) F tests p({e}) for all eEE. 

(vi)fEF~there exists eEE withp({j})~p({e}). 

(vii) e E E ~ there exists fE F with p({j~ p({e}). 

Then, conditions (0, (ii) and (iii) are mutually equiva­
lent. Also, conditions (iv), (v) and (vi) are mutually 
equivalent. Condition (iii) implies condition (iv) and con­
dition (vi) implies condition (vii). If .A is a Dacey man­
ual, then conditions (i) through (vi) are mutually 
equivalent. 
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Proof: Let A ~ E and assume that condition (i) holds. 
For each eEE. choose Fee;;.F such that p({e}) ==p(Fe). If 
we put B==U{Fel e EA}, we will have Be;;. F andp(A) 
=p(B); hence, (i)~(ii). That (ii)~(iii) and that (iii) 
~(i) is clear. Hence, (0 ~(ii) .... (iii). We shall now 
show that (iii)~(iv). Assume (iii) and let De;;. E. By (iii), 
there exists B ~ F with p(D) ==p(B). Since B~ F, then F 
testsp(B)==p(D); hence, (iii)~(iv). 

Evidently, (iv)~(v). We now show that (v)~(vi). As­
sume (v) and letfEF. Sincef~I'l==E.L, there exists 
eEE withf~{e}.L. But, by (v), fE F~{e}.L.LU{e}-'; hence, 
fE{e}-'J., P({f})~p({e}). This proves that (v)~(vi). We 
now claim that (vi) ~(iv). To see thiS, assume (vi) and 
let D~E. We must prove that F~D.L.LUD.L. Thus, choose 
an arbitrary fE F. By (vi), there exists e E E with 
/E{e}u. If eED, then/E{e}ue;;.D.L\ while if eEE".D, 
then, fE {e}-'J.e;;.D.L. This proves that (vi) ~ (iv). Hence, 
(iv) .... (v) <=*(vi). We shall now show that (vi) ~ (vii). 
Assume (vi) and suppose that e E E. Since e Et I'l == F'-, 
there exists fEF withfEt{e}-'. By (vi), there exists eo 
E E with f E {eo}u. If eo'" e, then we would have f E {eo}U 
<:;;; {e}'-, a contradictIon. Hence, eo = e and f E {e }U, that 
is, p({j})~p({e}). Thus, (vi) ~(vii). 

Now, assume that .A is a Dacey manual. In order to 
show that conditions (i) through (vi) are mutually equiva­
lent it will suffice to show that (iv) ~ (ii). Thus, assume 
(iv) and let A ~ E. By (iv), F tests p(A). By theorem 8, 
part (i), there exists Be;;. F with p(B) =p(A). This proves 
(iv) ~ (ii) when ...lis a Dacey manual, and the proof of 
our theorem is complete. 

The equivalence of conditions (i) and (ii) in Theorem 
14 shows immediately that the relation I; is transitive 
on...l, that is, if E, F, G E.A with E I;F and F I; G, then 
E ~ G. Since it is clear that any operation is a refine­
ment of itself, then (...1,1;) is a quasiordered set in the 
sense of (Ref. 20, p. 20). 

In the following example, we shall show that any man­
ual can be replaced by a manual...t* that contains all 
possible coarsenings of the operations in...l. In order to 
effect this, it is only necessary to promote the nonempty 
...I-events to the status of outcomes. 

Example IX: Given a manual...l, we define the event 
saturation of .A to be the manual...t* conSisting of all 
partitions of the operations in...t. Then, each operation 
E E .A can be canonically identified with the correspond­
ing E*={{x}lxEE}E...t*. The operations in...t* accord­
ingly represent coarsenings of the operations in.A and 
every such coarsening appears expliCitly in.A*. 
Furthermore,...t* is an elementary manual and II(...t*) is 
canonically isomorphic to II(.4). Notice that the outcomes 
for...t* are precisely the nonempty.A-events. The manu­
al...t* has a number of interesting and significant induced 
submanuals. In particular, if we are concerned only 
with finite (respectively, countable) coarsenings of the 
operations in.A, we can look at the submanual...tt 
(respectively, ...t!) conSisting only of the finite (respec­
tively, finite or countable) operations in...t*. Note that 
~* and...t! are also elementary and that II(fi.j ,J/*) 
== II (...t; ,.A*) == II (J/*) . 

In the passage from...t to...t* we have lost nothing of 
physical significance. Moreover, .A* is the "elementary 
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version" of the manual.,;' promised in the preceding sec­
tion; clearly, in practice, it is always available. 

Let.,;' be a manual and let t; be the refinement relation 
on.A. If :m is a subset of .Aand if there exists an opera­
tion E in mt such that, for every operation FE mt, F r; E, 
then we would surely be prepared to say that E is effec­
tive as a "grand canonical operation" for the set :m. In 
practice, however, such a stringent operational condi­
tion can rarely be achieved. A more realistic condition 
is obtained if we merely require that, given any two 
operations E and Fin mt there exists an operation G, 
also in mt, such that E, F r; G. If mt is a nonempty subset 
of .A satisfying the latter condition, we shall follow 
customary mathematical usage and say that mt is upward 
directed by refinement. Given such an upward directed 
set mt, nothing is lost if we adjoin to mt all of the avail­
able coarsenings of the operations already in mt. These 
conSiderations lead us to define a refinement ideal in 
the manual.4'to be a nonempty subset mt of.Awhich is 
upward directed by refinement and which has the prop­
erty that if FEmt and if EE.4'with E t;F, then EEmt. 

Theorem 15: Let mt be a refinement ideal in the man­
ual. . .oI. Then, mt is an induced Boolean submanual of ..01 
and the Boolean algebra rr(;m) is isomorphic to the 
Boolean sublogic II(mr,..oI) of rrM. 

Proof: Let E, F E:m and let A <;;; E, B <;;; F. Since mt is 
a refinement ideal, there exists an operation G E mt with 
E,F r;G. By Theorem 14, there exist Al>Bl<;;; G such 
thatp(A)=p(A l ) andp(B)=p(Bl ). PutAo==Al"BI> Bo 
==Bl"Al and D= Al n Bu so that p(Ao), p(Bo) and p(D) 
are mutually orthogonal propositions in rr(mt,...t), peA) 
==p(Ao) fBp(D) and pCB) =p(Bo) fBp(D). 

Suppose first that A lB. Then, p(A)fBp(B) 
=p(Al)fBp(Bl ). Lete==G,,(AlUB1), H==AUBUe, 
noting that, by the coherence of.4', H is an .A-event. 
But, p{R) =p(A) fBp(B) Eli pee) == peAl) fBp(Bl) fB pee) =p(G) 
== 1; hence, H E.A. We claim that H!; G. To establish 
this claim, we choose h E H and prove the existence of 
an event D h <;;; G such that p({h}) ==p(Dh ). If h EA, we use 
the fact that A <;;; E r; G to produce Dh <;;; G with p( {h}) 
=p(D,). A similar argument applies if hEB, while, if 
hE e, we merely put Dh =={h}. ThUS, H r; G Emt. Thus, 
since mt is a refinement ideal, H Emt. This proves that 
mt is actually an induced submanual of..ol. 

We now drop the assumption that AlB. Let Y be the 
outcome set for the manual mt and let # be the relation 
of operational rejection induced on Y by mt. Since mt is 
an induced submanual of..ol, then, for M <;;; Y we have 
M#=M"n Y. We now suppose that the two propositions 
(A##,A'if) and (B##,B#) in the logic rr(mt) coincide, that 
is, we suppose that A# ==Blf. Since p(A) =p(Ao) Elip(D) 
and p(B) =P(Bo) Elip(D), we have A"=(Ao).l.nDl. and BJ. 
== (Bo)l. n D". Intersection of both sides of the latter equa­
tions with Y produces A # = (Ao}l'j n D# and B# = (Bo)# 
n D#, so that (Ao)# n D# = (Bo)# n D#. Since Ao (Bo)# 
n D#, we have AD <;;; (Ao)#, which forces Ao == Ill. Similar­
ly, Bo = Ill, so peA) ==p(D) =p(B). This allows us to de­
fine a mapping cp: rr(mt)--rr(mt,.A) by cp(A##,A#»==p(A) 
for every mt-event A. That cf> is an isomorphism is 
clear. The above considerations also show immediately 
that rr(mt,....t) is a Boolean sublogic of rrV/). Since rr(mt) 
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is isomorphic to the Boolean algebra n(mt,..ol), it too is 
a Boolean algebra. The proof is complete. 

The preceding theorem naturally raises the following 
question: If mt is an induced submanual of the manual..ol, 
and if there exists an operation E E.Awhich simulta­
neously refines all of the operations in mt, then is mt a 
Boolean sub manual ? An obvious modification of Example 
VII shows that, in general, the answer is no. 

Suppose now that.4' is an elementary manual and that 
L is a Boolean sublogic of rr0t). By Theorem 13, .AL 
={E E.Alp(D) EL for every D~E} is an induced elemen­
tary submanual of.A and rr(..oIL,....t) == L. Furthermore, it 
is clear that if F E.AL and if E E.Awith E f;; F, then 
E E..oIL • In view of Theorem 15, it is natural to ask if 
..oiL is a refinement ideal. Suitable examples show that 
the answer, in general, is no. If we assume that.A is 
not only elementary, but locally jinitein the sense that 
every operation in.4'is finite, then we can prove that 
.AL is indeed a refinement ideal. ' 

Theorem 16: Let..olbe an elementary and locally finite 
manual, let L be a Boolean sublogic of rrM and let.4'L 
={EE.Alp(D)EL for every D<;;;E}. Then,..oIL is a re­
finement ideal in.A and L = rr(.AL,...t). 

Proof: By Theorem 13, we know that.4'L is an induced 
elementary submanual of.4'and that rr(.4'L,.A)=L. It is 
easy to see that if FE.AL and if E E.Awith E !;F, then 
EE..oIL• We have only to show that if E,FE~, there 
exists G E.4'L with E, F r; G. Thus, let E, F E.4'L and 
choose, for each eEE and eachfEF, an.A-eventD(e,f) 
such that p(D(e,j» is the infimum, calculated in the 
Boolean algebra L, of p({e}) and p({j}). Because of the 
distributive laws in the Boolean algebra L, we have 
p({e}} == Eli {p(D(e ,f» I f E F} for each e E E. 

LetJ={(e,f)leEF, fEFandD(e,f)*IlI}. Since.4'is 
elementary, we can choose an.4'-outcome x(e,f) for 
each (e,f)EJsuch thatp({x(e,f)})=p(D(e,j». Let G 

{x(e,j) I (e,j) E J}. Since.A is locally finite, then G is 
a finite orthogonal set; hence, by coherence, G is an.A­
event. We are going to show that G E.A. In order to do 
this, it will suffice to show that there exists no .4'-out­
come x with XE Gl.. But, if XE Gl, then XE (D(e,f)Y for 
every e E E and every jE F. From the equation p({e}) 
=Eli{p(D(e,f»lfEF}, it follows that xle for every eEE, 
contradicting (Ref. 13, Lemma 3). We conclude that 
GE.A. 

Since .A is locally finite, then G is a finite set. Thus, 
ifA<;;;G, p(A) fB{p({x})lxEA}EL; hence, GE.AL • 

Suppose that eEE. LetA = {x(e,j) I (e,j) EJ, fEF} and 
note that A <;;; G with p(A) ==EB{p({x(e,f)}) I (e,f) E J, fE F} 
= Eli {p(D(e,!i> IfE F}=p({e}). This proves that E r; G. A 
similar argument shows that F !; G, and the proof is 
complete. 

Theorem 17: Let .Abe a locally finite elementary 
manual. Then there is a one-to-one correspondence L 
-.AL between Boolean sublogics L of rr~ and refine­
ment ideals .AL in..ol. 

Prooj: For each Boolean sub logic L of rr4.ot), let.AL 
={E E...tlp(D) E L for all D <;;; E}. By Theorem 16, .4'L is 
a refinement ideal in.Aand rr(.AL,.A)==L. Let :Jrrbe a 
refinement ideal in.4'. We must prove that there exists 
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a Boolean sublogic L of n~ with ;m=~. By Theorem 
15, L =n(;m,.At) is a Boolean sublogic of II~. Further­
more, it is clear that ;m~ ...tL • Suppose that E E...tL • 

Then, for each e E E, p({e}) E L = n(;m,...rt); hence, there 
exists an :JR-event De such that p{{e}) =p{De). By 
Theorem 15, ;m is an induced submanual of...t. By co­
herence, and the fact that E is finite, it follows that 
U{Del e E E} is an :JR-event. Put F= U{Del e E E} and note 
that p{F) =EB {P(De) I e E E}=EB{p{{e}) leE E}=p(E) = 1; 
hence, FE:JR. Evidently, E I; F; hence, Since :JR is a 
refinement ideal, E E:JR. Thus, :JR=...tL , and the proof 
is complete. 

If we wish to invoke Theorem 17 in order to study the 
Boolean sublogics of a manual...twhich is not necessari­
ly elementary or locally finite, we can always pass to 
the manual.Ari of Example IX, noting that this entails no 
essential loss of physical content and that the logic 
n"'6') is canonically isomorphic to the logic n(.t). Thus, 
suppose that...t is a locally finite elementary manual. 
Let D be an ...t-event and choose any operation E E ...twith 
D ~E. Let :JR={H E...tIH I;E}, noting that :JR is a refine­
ment ideal in...t and that, by Zorn's lemma, :JR can be 
extended to a maximal refinement ideal .Nof...t. By 
Theorem 17, the corresponding Boolean sublogic B 
= n(.A',.4) is a maximal Boolean sublogic of n(...t) and 
p(D) E B. Following Greechie, 29 we refer to a maximal 
Boolean sublogic of n~ as a block. Thus, we have the 
follOwing result: 

Theorem 18: Let...t be any manual and let p{D) be any 
proposition in the logic n(...t). Then, there exists at least 
one block B in n(.t) with p{D) E B. 

Thus the structure of the logic n~ of a manual...tis 
determined by the structure of its blocks and the manner 
in which they intertwine. The notion of an observable 
will be introduced in a forthcoming paper in this series, ' 
and it will be seen that each observable "lives on" some 
block. Moreover, the set of all observables that "live 
on" a given block will provide a maximal classical view 
of the experimental universe of discourse implicit in the 
manual of operations under conSideration. As a conse­
quence of Theorem 17, it will be seen that the opera­
tions that measure these observables are precisely 
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those in the refinement ideal corresponding to the block. 
The maximal classical views provided by the various 
blocks are, of course, complementary in the sense of 
N. Bohr. 30 
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Eledron in the field of two monochromatic 
eledromagnetic waves 
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The motion of the electron in the classical as well as in the quantized field of two circularly 
polarized waves which move in opposite directions is investigated. The spin characteristics of the 
electron are neglected and it is assumed that the electron and one of the waves move in the same 
direction. In the classical case the problem is reduced to the solution of the general Mathieu 
equation, but in the quantum case to the solution of an ordinary second-order differential equation 
with two irregular points. For particular values of the parameters the analytic expressions of the 
solution ace found. The character of the solution essentially depends on the mutual polarization of 
wa;es. The conserved quantity for opposite polarization of waves is the energy of the electron, but 
for the same polarization it is the momentum of the electron. In the latter case the effective potential 
depends on the time, and the electron-positron pair creation is allowed. 

I. INTRODUCTION 

In view of the increased experimental possibilities of 
producing strong electromagnetic fields, there has been 
more interest in finding fields for which the exact solu­
tion of the Dirac equation can be obtained (or of the 
Klein-Gordon equation in the case of scalar electro­
dynamics). Apart from the previously known solutions 
of the Dirac equation (the bibliography is mentioned in 
Ref. 1), in recent years solutions have also been found 
for other potentials. 2-4 

On the other hand, quantization of an electromagnetic 
field involves such difficulties of a mathematical and 
fundamental nature that beside the traditional perturba­
tion theory there are but few exactly solvable models. 5,6 

One of the authors7 ,8 has found a solution for the model 
which, of all the quantized electromagnetic field, al­
lowed only for the photons propagating in one direction. 
The model is valid at large numbers of photons and the 
solution obtained is a quantum generalization of Volkov's 
solution for the electron in the classical field of a plane 
wave. 

The present paper considers the motion of an electron 
in the field of two monochromatic electromagnetic 
waves. A similar problem has already been considered 
in connection with the Kapitza-Dirac effect. In this 
process one usually proceeds from the Schrodinger 
equation in which the vector potential is time-aver­
aged. 9,10 For Dirac's equation this problem was con­
sidered by Sen Gupta. 11 We shall treat both the case of 
the classical field of two electromagnetic waves and that 
of the quantized field. The latter leads to equations 
which are of interest from the point of view of mathema­
tics. For simplicity, we shall neglect the spin proper­
ties of the electron, using the Klein-Gordon equation 
throughout. 

II. ELECTRON IN THE CLASSICAL FIELD OF 
TWO ELECTROMAGNETIC WAVES 

The Klein-Gordon equation has the form (the metrics 
and the system of units are the same as in Ref. 12) 

[(io~" +eA"f +m
2
}I1=O, (1) 

where e and m are the charge and mass of the electron, 
A" is the vector potential of the electromagnetic field. 
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We shall use the coordinate system in which the waves 
propagate in opposite directions with equal frequencies. 
Suppose that this direction coincides with the z axis. 
One can always pass to such a coordinate system with 
the help of a Lorentz transformation, excepting the case 
when both waves propagate in the same direction. Fur­
ther, we shall confine ourselves only to the case when 
the electron moves along the z axis and both waves have 
circular polarization. The vector potential of such 
waves can be written as 

A~ = a,. [ell' cos(k1x) + e2" sin(klx)] + ll:J[ell' cos(k~) 

± e2 " sin(k~)], (2) 

where a,. and ll:J are the wave amplitudes and the unit 
polarization vectors ell' and e2" and the wave vectors kl 
and k2 satisfy the relations (ele2)=(eikj)=ki=k~=O. 
The "+" and "-" signs indicate, respectively, opposite 
and similar circular polarizations of both waves. 

Now if expression (2) is substituted in Eq. (1), we 
shall find that with opposite polarization of the waves 
the wave function is 'I1=q\(z)exp(-iEt), where 'Pl 
satisfies the equation 

[:2 + E2 _m 2 
- e2(ai +~) - 2e2a,.a2 COS2wzJ'Pl = O. (3) 

With similar circular polarization the wave function 
is '11 = 'P 2(t) exp(ip z-Z) and 'P 2 satisfies the equation 

[:;2 +p;+m2+e2(ai+~+2e2a,.ll:JcOs2wtJ'P2=O. (4) 

Here E and Pz are the energy and the momentum of the 
electron, w is the frequency of the electromagnetic 
waves, t is the time. 

It is noteworthy that in both cases the variables are 
separable. This property vanishes if one passes to 
linearly polarized fields and takes into account that 
component of the momentum of the electron which is 
perpendicular to the direction of propagation of the 
waves. As is seen, the electron energy is conserved 
and the effective potential is periodic in z in the first 
case, and in the second case the momentum of electron 
is conserved along the z axis and the effective potential 
is periodic in time. Equations (3) and (4) are Mathieu 
equations. 13 We are concerned with stationary solutions 
in the form of propagating waves, so that 
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00 

CPl = exp(ip;z) L; an exp(iwnz) , 
n=_OO 

00 (5) 
cP 2 = exp( - iE'f) L: bn exp( - iwnf) , 

n=_OO 

where p; and E' are real characteristic exponents and 
the sums are periodic functions in z and f with period of 
27T/W. However, the stationary solutions (5) exist not for 
arbitrary values of the parameters, but only in the so­
called stability zones. Along with these zones there 
exist forbidden zones with respect to energy for Eq. (3) 
and with respect to momentum for Eq. (4). In the first 
case the physical picture corresponds qualitatively to 
the motion of an electron in a one -dimension lattice in a 
solid. For the second case a physically analogous prob­
lem is difficult to imagine. It should be noted that since 
in case (5) n changes from - 00 to 00 the function cP 2 will 
always contain terms both with positive and negative 
frequency. This means that pair production is observed 
in the second case. Apparently, it will be most intense 
when E' becomes a multiple of w. In practically pro­
duced fields, however, e2~a2/m2« 1; therefore, in the 
second case the electron motion is almost free, and only 
weakly perturbed by the field. BeSides, for optical fre­
quencies w« 2m pairs will be produced only in a very 
high order of perturbation theory, since to produce them 
many photons must be absorbed from both waves. 

III. ELECTRON IN THE QUANTIZED FIELD OF 
TWO ELECTROMAGNETIC WAVES 

Quantization of the electromagnetic field leads to the 
vector potential AI' becoming an operator and instead of 
expression (2) we have12 

A~ = ~ {e~cl exp[i(k1x)] + e:c~ exp[ - i(k1x)]} 

+ v'2~ {e:c2exp[i(k~)] +e~c;exp[-i(k~)]}, (6) 

where 

n is the normalization volume. For the annihilation 
operator c i and the creation operator ci for photons we 
shall choose the following representation: 

ci=(llf2)(~i + il~j)' Cj=(1/f2)(~i - il~J. (7) 

The upper (lower) signs on the vectors el' in the sec­
ond set of parentheses of expression (6) correspond to 
opposite (similar) circular polarization of both waves. 

Now, let us substitute expressions (6) and (7) in Eq. 
(1) and apply to the latter the canonical transformation 
used by one of the authors in Ref. 7. Then it can be 
easily shown that the wave function >11 has the form 

>11 = exp G(qX) + i(~lX) (ilil~~ - ~~ + 1) 
+ i(k2x) (~ _ t 2 + 1)J rn 

2 il~; '>2 Y, 
(8) 

where ql'(O, 0, q., iqo) is the total momentum of the sys­
tem under consideration and the function cP depends only 

J. Math. Phys., Vol. 14, No. 10, October 1973 

on the variables ~l and ~2 and satisfies the equation 

Here h = e2 /2wO. 

In deriving Eq. (9) the electron and photons are as­
sumed to propagate along the z axis. In order not to 
deal with the oscillator's zero-point energy we have in­
troduced the term i(k1x)/2 + i(k~)/2 in the index of the 
exponent (8). Below we shall consider the two cases of 
polarization separately. 

A. Opposite circular polarization 

In this case we have the "+" sign in the last round 
brackets of Eq. (9) and it is easily seen that the opera­
tor for the total number of photons S commutes with the 
entire square bracket of Eq. (9): 

S= - Hilil~~ -~~ + 1) - ~(ail~2~ -~; + 1). (10) 

We shall denote the eigenvalues and eigenfunctions of 
the operator S by sand cP s' The quantity s can be a non­
negative integer. Since the total energy and the energy 
of electromagnetic field ws are conserved, the electron 
energy is conserved too, which fully agrees with the 
case of nonquantized waves having opposite polarization. 

Since the total number of photons is a good quantum 
number, the solution of Eq. (9) decreasing for ~l> ~2 
- ± 00 can be sought as a finite series of undisturbed 
oscillator wave functions 

(11) 

where Hn are Hermite polynomialso If one substitutes 
expression (11) in Eq. (9) and takes into account known 
relations between adjacent Hermite polynomials the 
following recurrence relations for the coefficients C~ 
are obtained: 

[n(s -n)+d1n +:\.JC~ - b[(s -n + 1)C~_1 +(n+ 1)C~+1]=0, 

(12) 

n=0,1, ... ,s, C~=O ifn<Oorn>s. 

Here the following notation is introduced 

d _ (qk2) -(qk1) _ q. h h 
1- (k

1
k

2
) - w' b=- (k

1
k

2
) = 2w2 ' 

A _ rfo - q~ - m2 - 2h - 2s[u,(q. + qo) + h] 
s- 4w2 

(13) 

In order to obtain nontrivial values for the s + 1 coef­
ficients C~, it is necessary to equate to zero the deter­
minant composed of the coefficients at C~. Hence for 
any s one can obtain s + 1 real and different roots Asv 
and construct the corresponding orthonormalized func­
tions cP sv(~l' ~2) where v = 0,1, .... Knowing Asv(q., w, h) 
and taking into account (13) we find that the total energy 
of the system is equal to 
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qo= sw ± [(qz + SW)2 +m2 + 2h(s + 1) + 4W2Asv ]1/2, (14) 

i. e., the sum of the photon energy and the electron en­
ergy. Due to the interaction with photons the latter is 
different from the expression for energy of a free 
electron. 

We shall give expressions for Asv' the total energy of 
the system qo and normalized eigenfunctions cP sv at s = ° 
and s=l: 

s=o, AOO=O, 

qo= ± (m 2 + iz + 2h)1/2, 

1 (~2 e) 
CPoo= I1i exp - 21 - 22 ; 

s=l, v=O;l, A1v =- ~1 +(_l)v(~ +b2y/2, 

qo = w ± [m 2 + iz + w2 + 4h + (_1)v2(w2q; + h2)l/2]1/2, 

2(b~2 - Alv~l) (H ~~) 
CPlv= [21T(b2+AivH/2 exp - 2" - 2" . 

We note the following circumstance. One can con­
struct from the coefficients C~ a polynomial of degree 
s in a certain variable x 

s 

Fs= 6c~n 
n=O 

(15) 

and taking into account the recurrence relations (12) one 
can derive the differential equation which is satisfied 
by this polynomial: 

(X2 d~2 - [bx2 + (d,. + s -l)x -b] d~ +bsx -As)Fs=O. (16) 

Polynomial solutions of the type of Eq. (16) were re­
cently investigated by Pham Ngoc Dinh.14 He also 
proved that the polynomials Fsv(x) are orthogonal on a 
unit circle. 

B. Similar circular polarizations 

In this case we have the H+" sign in the last round 
brackets of Eq. (9) and the operator L describing the 
difference in the number of photons propagating in op­
posite directions commutes with the whole bracket of 
Eq. (9). 

1(a
2 2) 1(a

2 
2) L = 2" a~~ - ~2 - 2" a~i - ~l • 

(17) 

We shall denote the eigenvalues and eigenfunctions of 
this operator by land cP I' The quantity l may be any in­
teger. Since the total momentum of the system and the 
momentum of photons wl are conserved, the momentum 
of the electron along the z axis is conserved too, which 
is in agreement with the case of nonquantized waves 
with similar polarization. 

The solution of Eq. (9) will be sought again as a 
series in undisturbed oscillator functions. However, 
now this series will be infinite because now it is not 
the total number of photons that is limited, but rather 
the difference in the number of photons propagating in 
opposite directions. At l ~ ° we have 

( H ~~) ~ 
cp,=exp - 2" - 2" ~c,!Hn(~1)H'.n(~2)' (18) 
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Substitution of expreSSion (18) in Eq. (9) leads to the 
following recurrence relations for the coefficients 

[n(n + l) + d2n + A,]C~ - b[tC~_l + 2(n + l)(n + l + l)C~.l] = 0, 

(19) 

where n=O, 1"", C~=O if n< 0, 

d __ (qk1) + (qk2) + 2h = _ qo _ 2b 
2- (k

1
k

2
) w' 

(20) 

and A I has the same form as As with l instead of s. At 
l .;; ° the sum (18) begins with Ill, but the recurrence 
relations obtained are the same as (19) with III instead 
of l and the opposite sign before qz. 

Equating to zero the infinite determinant of the coef­
ficients at C~, one can find the eigenvalues of A,v where 
V= 0,1,···. Now expreSSion (14) is valid with l instead 
of s. But since d2 and consequently A ,v depends on qo, it 
is in fact the equation determining the total energy of 
the system in terms of the other parameters. 

If instead of C! we introduce 

(21) 

the recurrence relations will become more symmetrical: 

[n(n + 1) + d2n + A,]r~ - b[(n + l)r~_l + (n + l)r~.l] = 0. (22) 

As in the first section one can- introduce the functions 
F I and G I of a certain variable x, 

(23) 

and taking into account the relations (19) and (22) one 
can derive the differential equations which they satisfy: 

(X2-2bX)d~2 +[(d2 +l+1)x-2b(l+1)];!. - b; +AI)FI=O, 

(24) 

(X2 d~ - [bx2 - (d2 + l + l)X+b]d~ -b(l + l)X+A I)G ,=o. 

(25) 

Equation (24) has two regular singular points at x = ° 
and x = 2 b and one essential singularity at infinity. 
Equation (25) has two essential Singularities at zero and 
infinity and differs from Eq. (16) only in signs of some 
coefficients. We shall dwell only on Eq. (25). Accord­
ing to the general theory of equations with two essential 
singular points15 Eq. (25) belongs to the type of equa­
tions which have one essential singular solution and the 
second solution, which is just that we are interested in, 
can be represented as a series (23). This series is 
asymptotic and becomes convergent only when A, is 
equal to the eigenvalue A ,V ' 

At small b the eigenvalues and eigenfunctions can be 
sought as 

~ 

AI= 6 bmA';', G , = 6 bmg';'(x). 
m=O m=O 

(26) 

Accurate to within b2
, 

A =-v(a _V)+b2(V(V+l) + (v+1)(v+l+1)\+ ... 
Iv 1-a 1 + a J ' 
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G = v + b(vx
V

-

1 
+ V + 1 + 1 xV+1) 

Iv X 1-a 1 +a 

b2( v(v - 1) v-2 + (v + l -l)(v + l + 2) xV+2) + •.. 
+ 2(1- v)(2 - v) x 2(1 + a)(2 + a) , 

(27) 

where a = 2v + d2 + l, v = 0, 1, ..•. We shall give one 
more expression for A 10 at v = 0 accurate to within b6

: 

2 (l + 1) 4 d2{l + 1) 
A,o=b d2+l+1 +b (d2+l+1)3(d2+l+2) 

6 2d2(l + 1)(d2 - I - 1) + 
+ b (d2 + l + 1)5(d2 + I + 2)(d2 + l + 3) ••• (28) 

Here d2 is determined according to (20) and consequent­
ly depends on b too. 

In conclusion, we shall consider some exact solutions 
of Eq. (25) at special values of parameter d2 without 
being concerned with the physical meaning of these solu­
tions. It can be easily verified that at d2 = 0 the solution 
of Eq. (25) is 

(29) 

That this solution corresponds to the state with v = 0 
is seen from the fact that at d2 = 0 the series (28) is 
finite and becomes equal to b2

• It is noteworthy that 
these eigenvalues are the same for all l. If one takes 
into account the relations (18), (21), and (23) one can 
obtain the following expression for the wave function 

( 
~f ~~).. (b /2)n 

CfJ,o=Nexp - 2" - 2" ~nl(n+l)! Hn(~1)Hn+I(~2)' (30) 

where the normalization constant N is 

N = [b ' /1T2 II ,(2b) ]1/2. (31) 

I ,(2b) is the modified Bessel function of the first kind. 
If further l/(n + l)! is represented as circuital integral 
round zero and the generalized expression of Mehler16 

for Hermite polynomials is used, we shall get an in­
tegral presentation for the function 
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XeXP(b"T + 2~1~2;2 ~;f -~~). (32) 

Integration here is over a closed circuit round both es­
sential singular points "T = ± 1. 

Solutions in closed form which correspond to another 
'vat d2 = 0 failed to be found. But if ~ is a negative in­
teger, for instance d2 = - k, one can find k + 1 solutions 
which are the exponents (29) multiplied by the poly­
nomial of k degree. The eigenvalues of A1v are deter­
mined from the (k+ l)th order determinant Similarly to 
the previous section. 

Under even more special assumptions l = 1 and ~ = A1 
the recurrence relations (22) pass into the recurrence 
relations of the Bessel functions. All of these except the 
first are satisfied if we put rn=J~1+n(2b). To satisfy the 
recurrence relation at n = 0 one should set J~1_1(2b) = O. 
This equation serves to determine the eigenvalues of 

~v· 
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Erratum: On the convergence of separable expansions 
for the t matrix 
[J. Math. Phys. 14,373 (1973)] 

T.A.Osborn 
Department of Physics, Brooklyn College of the City University, Brooklyn, New York 
(Received II May 1973) 

It has been pointed out to the author, by I. Sloan and 
J. Gray 1 that the proof of Lemma 1 is incorrect. We 
present here a corrected proof of Lemma 1. 

Proof: From Eq. (7), we can show t(z 1) - t(z 2) is 
compact if (z2-z1)t(Zl)gO(Zl)gO(z2)t(z2) is compact. 
The only case of interest is when one of the two com­
plex z lie on the positive real axis. The situation where 
both z 1 and z 2 are bounded away from the positive real 
axis is dealt with by Proposition 1. The kernel corres­
ponding to the rhs of Eq. (7) is 

The proof of this Lemma is complete if we can show 
K is Hilbert-Schmidt in JC. We effect this demonstra­
tion by employing Faddeev's lemma on singular inte­
grals. 2 This lemma states that if a function f is bounded 
and Holder continuous with respect to an estimating 
function M with indices l1i and Vi' viz. 

and 

I f(Pl + hI; P2 + h 2; P3 + h3; zl + .Ill) - f(Pv P2' P3' zl) I 

::s CM(P1,P2,P3;zl) 

=[lh11~l+ Ih21~2+ Ih31~3+ la1 1"l], 

where 

i = 1,2,3, 

then the following result holds. Let N(P1' P2; z 1) be such 
that 

J dn p3 M(P1,P2,P3;t)::s CN(PVP2;zl)(1 + IP31)-1-0, 

then f 1 defined by 

f(P . )_J f (P1,P3,P3;Zl)d 3 
1 1,P2,zV Z 2 - p 2 P3 

3 - z2 

is bounded and Holder continuous with indicies 11; < l1i' 
vi < Vj relative to an estimating function M1 given by 
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where e' < min(1, e) and 11; and vi may be chosen as 
close to l1i and Vj as desired. 

This lemma is easy to use here since the kernel of K 
is bounded by an estimating function of the form 

t(Pv P3; z 1)t(P3' P2; z 2) 

(p~ - z 1) 

C 1 ::s ------~ ----~----~--~~~------~---
Ip~ -z11 (1 + Ip3 -P11)1+6(1 + Ip3 -P21)1+6' 

where e > 1/2 and index for Holder continuity in P3 is 
11' < 11. Here 11 is the index given in condition B. We 
need to calculate the angular integral over dflP3 to find 
the N that results from the inequality immediately above. 
An elementary estimate gives 

(1 + Ip3 -P11)1+6(1 + IP!J -P21)1+6 

<~~ __ ~ __ ~~C~~ __ ~~~ 
- IN-z11(1 + Ip11)1+6(1 + Ip21)1+6· 

Thus N can take the form 

N(P . z z) _ 1 
1,P2' l' 2 - (1 + Ip 1 1)1+6(1 + Ip2 1)1+6 

which used in Faddeev's lemma for singular integrals 
gives 

Iz 1 -z 2 1C 
< ----~~------~--~--------~~ 
- (1 +IP 1 1)1+6(1 + Ip2 1)1+6(1 + Iz 2 1)6}'2· 

Thus for e > 1/2, the kernel K is square integrable. 
This completes the proof, 

II. Sloan and J. Grey (private communication, 1973). 
2L. D. Faddeev, Mathematical Aspects of the Three-Body Problem in 

Quantum Scattering Theory (Davey, New York, 1965), Chap. IV, 
Proposition III. 
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Erratum: Off-energy-shell t matrix for local potentials 
with non local square well core interaction 
[J. Math. Phys. 14,205 (1973)] 
O. Zohni 

Institut fur Theoretische Physik der Universitiit Frankfurt/M.. Frankfurt am Main, West Germany 
(Received 20 April 1973) 

The following corrections should be noted: 

1. In Eq. (2. 31) the factor 

Uo{32 

should be deleted from the right-hand side. 

2. In Eq. (2.32) d 2 and d 3 should read: 

d 2 = - u1fi drrjo(k'r)rh(j(a1r), 
"0 

ds = - U 11.,"'1 drrjo(k'r)rh'Q(a1r). 
o 
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3. In Eq. (2. 33) the right-hand side should read: 

Ud32 

X(k' (3' r) - --:-:---c::----::-:--­
" - (k'2 + (32) sinh{3r 0 

x {sink'r [sinhJ3(r - ro) 

- sinh{3r - cosh{3(r - ro) 

x sinh{3r] + sinh{3r sinkro}' 

4. In Eq. (2. 34) the factor (lq21 )1/2 after the curly 
bracket on the right- hand side should read 
(I q2 1 )1/2. 
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