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We develop diagrammatic methods which give the explicit expression for the #th order term of the
linked Iwamoto-Yamada cluster expansion in terms of the cluster integrals. The method applies
independently of the number 4 of particles of the system. We carry through partial summations
which for finite 4 result in a representation of the expansion by skeleton diagrams, whereas in the
limit A > = the expansion is reduced to two analytical equations. In addition, for finite 4 the
renormalization establishes a connection between the expectation value of an arbitrary operator and
the probability to find » hole states, 1 <n < A, occupied. Simple considerations raise some doubts

concerning the convergence of the unrenormalized expansion.

1. INTRODUCTION

The last years have seen a considerable revival of the
interest in the application of cluster expansion methods
to nuclear systems. The cluster expansion expresses
the expectation value (0) = (¥ |0 |¥) /(¥ | ¥) of an
operator O by a series of terms the nth of which,
roughly speaking, gives the contribution to (0) of n-
particle correlations contained in the wavefunction ¥.
Several different cluster expansions have been estab-
lished. Most applications employ the expansion of
Iwamoto and Yamadal (I.Y.) or its factorized version,2
which is intimately related3-8 to the hole-line expan-
sion of Brueckner theory. It has been found that varia-
tional calculations based on that method compete
successfully with Brueckner-type calculations. For
these reasons we concentrate in the following on the
1.Y. expansion.

Up to now a discussion of the general structure of the
1.Y. expansion has not been given since in contrast to
perturbation theory no general diagrammatic represen-
tation is available. Instead methods have been deve-
loped2:9.10 which allow the calculation of every term
of the expansion without giving the explicit form of the
nth order term. Three exceptions must be mentioned.
Feenberg and Wull.12 have established a graphical
representation of the I.Y. expansion which, however, is
limited to infinite systems. Providencial3 has given a
diagrammatic representation of a cluster expansion
which in contrast to the I.Y. expansion uses nondiagonal
cluster integrals. Recently, Gaudin et al.14 have given
a simple formulation of the 1.Y. expansion which is res-
tricted to the original Jastrow choice of the wavefunc-
tion. In all these approaches the possibility of perform-
ing partial summations was not considered (see, how-
ever, Ref. 15),

Here we develop a diagrammatic representation of the
1.Y. expansion which is applicable to finite and infinite
systems and to any form of the wavefunction. We use
rather straightforward diagrammatic methods which

are very similar to those of perturbation theory. Our
derivation can be divided into the following steps. (i)

In Sec. 2 we establish the formal representation of the
generalized normalization integral I(8) = (¥ |exp(80)|¥)
in terms of the cluster integrals (“‘unlinked” cluster ex-
pansion). The form of the wavefunction igfluences only
the cluster integrals but not the formal representation
of I(8) in terms of these quantities, All the following
steps depend only on the formal structure of the unlinked
expansion, (ii)In full analogy with the unlinked perturba-
tion expansion, the unlinked cluster expansion for any

m > 0 contains terms which behave like A™ with in-
creasing particle number 4. Thus this expansion is
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useful only for small A. We derive an exponential form
which constitutes a linked expansion with uniform A4
dependence (Sec. 3). (iii) Using the relation (0) = (d/dB) %
InI(8)| a0 We arrive at the linked 1.Y. expansion which
can be expressed in terms of ‘““‘unlabeled” diagrams
(Sec. 4).

For an infinite system the expansion can be resummed
(Sec. 5) and the resulting “renormalized” expansion is
expressed in terms of two analytic equations.16 Simi-
lar manipulations can be carried through for a finite
gsystem, leading either to an interesting identity (Sec.
6A) or to the representation of the expectation value
by “skeleton diagrams” (Sec. 6B). In Sec.7 we give
some remarks on convergence questions, and Sec. 8
contains a comparison with other approaches. In the
Appendix we present diagrammatic methods for the
evaluation of the cluster integrals starting either from
the product ansatz of ¥ or from the particle-hole rep-
resentation.

We have tried to state clearly all essential steps of the
derivation. We have skipped, however, the proofs of
some statements. These proofs are rather elementary,
though in some cases a mathematically rigorous presen-
tation will become lengthy.

2. THE UNLINKED 1.Y. EXPANSION

Here we establish the unlinked cluster expansion follow-
ing Ref. 2. For definiteness we use the product form of
¥ which is a generalization of the Jastrow form17 con-
sisting of a product of state-dependent n-particle cor-
relation functions fix“"'n(l’ ...,n) multiplied by a set

of orthonormal single-particle functions ¢, (¢):

i) 11 @, (i)}
(2.1)

If the range is not explicitly given, summations and pro-

ducts over the indices 4,j,...,% always range from 1

to A, and the argument (¢) denotes the space, spin, and

isospin coordinates of the ith particle. The symbol @

denotes the antisymmetrization operator.

v(,...,=e{0][ 0O f..; G,...
noiy<e i 1 n

<igy

IA

In addition we define functions ¥, . , K;< ---< K,
A, m = A, by the relation rom

m <Kj,eeer Km>
\IIKI“'Km(Kl”"’Km)=G'{ [1 [ I

n=1 lijceici,
. DT SN SN )

X Sy wnviy 1y een,3)] t y e, @} (2.2)

The symbol I'Iflf}:IL'{f’D(E fllf%'.;"'K”‘>) denotes the

product (sum) over all possible terms in which the
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fy,...,4, are taken out of the set (K,,...,K,,). We
introduce the quantities

J, =J,(8) =(o; | exp(BOD)| ¢,),

where 9(1) denotes the one-body part of the operator O,
and we define the (reduced) subnormalization integrals
by

IR = It
K -k, K K,

(2.3)

(B) = (¥,

8o

e . ...
iy | €00 W oy )
<Kl""le>

x 1 J1, K<

«<K,=A., (2.4

The reduced normalization integral, which we want to
calculate, is given by
IRR) = 1.4 (B) = (¥ [€5® |¥) X I Jil. (2.5)

The (reduced) cluster integralsx, .. ., , 1=n= A4, all
K; = A,are defined by the followmg requlrements

@ Xy, ...k 18 symmetric in its indices.
n
(ii) Xg ook, = 0 if any two (or more) indices are equal.
(i) F=1+x,, K=A, (2. 6)
R =1+ + +
ik, 1 X FEx, F g T F Ak
K, <K, = A 2.7
in general 1 2 @7
oo
Iﬁl"'Kn = ) "?_0 SKp--Kn{ll,...’ln},
1 n-
K;<..<K,=A (2.8
sk {y, . =1 ifall 1,=0; (2.9)
otherwise
n
ek {1} = s {ly, L = T, D
m=
<K1'°“‘Kn>
x 2 {x, x oo xx, }
iyreir 1 2
x{xil +18 02 Xoeee xx’ll+zl -1 11“312} Xoeees
X r=2; ml, (2.10)

Each term on the rhs of Eq. (2.10) consists of products
of I, cluster integrals with m indices,1 = m = n,and
we sum over all sets of indices ¢, .-« ¢, restricted by

=i, HK=#j, (2.11)
By virtue of the symmetry (i) of the cluster integrals
and of the fact that the sum is not changed if we permute
the factors within the curly brackets, the definition given
here is identical to that of Ref. 2, Combined with Eq.
(2.5), Eqs. (2. 8)-(2.10) represent the unlinked cluster
expansion of I®(B). The formal structure of the expan-
sion is completely independent of the choice of ¥. All
that is required is the definition of a set of subnormali-
zation integrals.

The form of the unlinked cluster expansion is not as
arbitrary as the derivation, given above, might suggest.
We illustrate this by giving a short account of the physi-
cal ideas! which have led to the creation of that expan-
sion. The guiding principle is the assumption that the
correlations are of short range,i.e., that | f; ...; (1,...,
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n) |2 tends to 1 rapidly if the distance between any pair
of coordinates tends to infinity. (This statement applies
rigorously® only in infinite systems.) Expanding IZ(B)
in powers of the quantity (| f |2 — 1) and carrying
through the integrations, we find that the general term
of that expansion separates into a product of integrals,
This separation automatically leads to the unlinked
cluster expansion,!4 and the cluster integrals are inti-
mately related to the irreducible integrals which
emerge from that procedure, The cluster integral with
p indices describes the contribution to I%#(8) which
arises from the correlations of p particles. If the
correlations are of short range, we expect that the
probability of finding p correlated particles will de-
crease rapidly as p increases, and we thus hope that
the contribution of T i, to IR (B) will decrease

rapidly with increasing p. More precise statements
on the structure of the cluster integrals are given in
the Appendix.

3. DERIVATION OF THE LINKED EXPANSION

It is well known that the contribution of x; i i

summed over all indices, asymptotically 1ncreases
proportional to the number A of particles. (This state-
ment is based on the short range nature of the corre-
lation functions. See the Appendix for a proof.) Thus

a term of the unlinked expansion containing a product
of m cluster integrals increases with increasing m like
A™, As a consequence for big A the unlinked expansion
is not directly useful and we must resum it into a
linked expansion.

We first have to get rid of condition (2.11) which res-
tricts the summation on the rhs of Eq. (2.10). We for-
mally define a set of Fermion operators a;,a; and mul-
tiply each term of the sum by (0la; -+ a; a‘,?r ---a; 10),
where [0) denotes the vacuum state. This yields the
expression

[

BE = 2

1122-.

s{1} = T guiytm,, 12
m=1

s{1}, (3.1)
(4]

T T
o |0y { e x 1)

x E <0|ai...ai a; .
iy t v tr

X eeo X X, b x... (3.2)

by vzl Plpral,

eriyee .
{0} and » are defined as in Egs. (2.9), (2. 10), respec-
tively, and we have omitted the upper indices 1,...,4
on S 1} We have extended the definition of S{l} to in-
clude also terms with 7 > A which vanish identically.

According to Wick's theorem18 the expectation value
{(0]a;-- ‘a; a; - ea [ 0) is given by the sum of all
r

fully contracted terms. All nonvanishing contractions
are of the form a;ay = 9,,. In terms of diagrams we
represent a cluster integral x; .. ; (B) by a vertical

beam carrying n points which from bottom to top are
labelled by the indices 7, to ,. The set {1} is repre-
sented by a collection of I,, m-point beams,m =1, 2,-
drawn in such & way that all m-point beams stand left
of all n-point beams if 7 < ». The points are labelled
by indices i, in such a way that within each beam K in-
creases from bottom to top and going from one beam to
the next K increases from left to right (natural labelling,
see Fig.1). The contraction g, gy is represented by a
directed line starting at pomt K and ending at point i.
Each fully contracted term gives rise to a diagram
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which has the property that in each point there starts
exactly one line and there ends exactly one line, The
contraction lines thus form closed loops and according
to point (ii) of the definition of x ijeei, DO loop may
touch a given beam more than once. In the diagramma-
tic representation of [I2(8) — 1] all diagrams with these
properties occur exactly once, The rules for calculat-
ing the contribution of a diagram are obvious from our
construction, except for the sign which is given by
(— )Z5o17 77D = (L 1)""t, Here 7(#) denotes the num-
ber of points (closed loops) of the diagram,and »_ de-
notes the number of points which are connected by the
7th loop. This sign rule can easily be deduced from the
ordering of the operators a’, a in the matrix element
0 [ai1 ceea a‘;r cee a;.1|0> . Examples of diagrams are
v

given in Fig. 1,
We introduce the notion of a connected part of a diagram.

Definition 3. 1: A connected part is any part of a dia-
gram with the following properties: (i) It cannot be sepa-
rated into two parts without cutting contraction lines or
a beam, (ii) We cannot include more beams or contrac-
tion lines without invalidating property (i).

We introduce an arbitrary fixed ordering of the sets
{1} which is indicated by an index (s):

{1} ""{1}(3) r—i{l{s)’lz(s),"'}, s=1,2,.-.

The sum of all diagrams of class {l}(s’ which consist
of exactly one connected part (connected diagrams) is
denoted by S{¥’. We define quantities A() by
A = [ (m 1) 19 1] % 59, 3.3)
n
We consider all those diagrams of class {1}0? 7{% =
o1 Vs 1), which consist of v; = 0 connected parts of
type {I}®, s=1,2,..., The contribution of all those
diagrams in which the £9 m-point beams,m =1, 2,
..., are distributed to these connected parts according
to a fixed scheme is given by
_;(s0) -
[0 @ty im (S0 atys, (3.4)
m 5§
as is obvious from the rules given above. There are
1491 x 11,(1$7 1)™s possibilities of distributing the

lf:"’ m-point beams to the different connected parts, and
by taking all these possibilities into account each dia-
gram is counted [1J; v, ! times. Thus the contribution
of all diagrams which consist of v, connected parts of

FIG.1. Some diagrams

contributing to I® (8) rep-
resenting the following

. .

q) §3 q> 3 5 terms: a) E,-lxil(ﬁ);b)“ 1/2

iy iy g iy iz ia = x"x(ﬁ) X%y 08)551"2;
a b ¢

i1ipiy 2%3
IR V2. DIV x, B
xiz53({5)355'4:25(35)6:'2&‘6:'32 .

5
' T A
i3 i3 M M
i ip iy i -
a b

, s iss

D 7 BT iz
. ) . 3 T N
’1m6 A m 4 ‘e

c
FIG.2. Pairs of diagrams giving the same contribution, respectively.
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type s is given by
[0 (1) im® @8N x [11 18901 11 (1891)7s]
m n N
X I (v, DHAC]S = Oy, D[S )%, (3.5)
st s

Since [T®(B) — 1] is given by the sum of all different
diagrams, we find

IR (B) = exp[G(B)], (3.6)
G@) = f)l SS (3.7

These equations constitute the linked cluster expansion
(L.C.E.).

4. THE EXPANSION OF THE EXPECTATION VALUE;
EQUIVALENT DIAGRAMS

Equationsg (2. 5) and (3. 6) show that the expectation value
{O) is given by

d d
=% = 7,6 520 + 25 60 |50 (4.1)

£
The differentiation of a diagram of class {1} yields
2wl diagrams which differ in the position of the beam
which has been selected for the differentiation. We rep-
resent the differentiated cluster integral x{l,_,iﬂ = d/dB

xil"'in(ﬁ) {o by a double beam, and we alter the ordering

of the beams in such a way that the double beam stands
left of all others. The thin simple beams now represent
factorsx, .. ; ==x; ,..; (0). We define the class {Xr)z;l} to

contain all different connected diagrams which consist
of one n-point double beam (standing left of all other
beams) and [,, m-point simple beams,m = 1,2,...,
ordered as before, A given diagram of class {s;1} is
created exactly (I, + 1) times by differentiation of dia-
grams of class {V'}, I, =1, ifm =n, I, = I, + 1.
Thus the following theorem holds.

Theorem 4.1: The quantity (d/dB) G(8) |, is given by
the sum of the contributions of all classes{n;1;. The
weight factor of the diagrams of class {z;1} is equal to
(R IR {1, 1) Hm ) im,

The diagrammatic representation of () established by
Eq.{4.1) and Theorem 4.1 contains a lot of diagrams
which give the same contribution. This is due to the
fact that (A) permutations of points within a beam (Fig.
2a) or (B) permutations of simple beams (Fig. 2b) do
not alter the contribution of the diagram. In addition
(C) all diagrams in which the same sets of points are
connected by closed loops give the same contribution
(Fig. 2¢). We evaluate the consequences of the symme-
tries A and B. Symmetry C eliminates the direction of
the contraction lines. This direction, however, will
prove useful in partial summations. Besides this in
many diagrams the symmetries B and C coincide, as
can be seen, e.g., from Fig.2b,

In the following we are concerned with diagrams of an

arbitrary fixed class {n;l} . We define sets C, and Cy

of operators which express the symmetries A and B in
a more precise form. i

Definition 4.1: The set C, contains all mappings
P, of {n;1} onto {n;1} which are defined by the follow-
ing steps:

(1) Permutation of the labels of the points within each
{double or simple) beam separately.

(ii) Shifting of the points with the contraction lines
fixed to them along the beams in such a way that the
natural labelling (see Fig. 2) is restored.
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Definition 4.2: The set Cy contains all mappings
Py of {n;1} onto {n;1} which are defined in the follow-
ing way:

(1) Permutation of the labels of all points of the res-
pective beams among different simple m-point beams.
The relative ordering of the labels within each beam
has to be preserved.

(ii) Shifting of the beams with fixed contraction lines
in such a way that the natural labelling is restored.

The set C,[Cy] contains n! [T, (m!)'m[111,!] ele-
ments. The mappings P, and Py are special permuta~
tions of the labels of the points, except for the shifting
of points or beams. Thus the following statements are
obvious,

Lemma 4. 1:

(i) Let o denote either A or B. If P,,P} € C_,then
P, X P, € C,. There exists an operation P;1 € C_, with
P, xP;t =1. Here I denotes the identity operation.

() ,ncy=1.
(iii) If Py € C, P, € G, then Pgl X P, X Py = P, € C,.

As can be seen from Lemma 4.1 the operations P, X Py
induce an equivalence relation among the diagrams of
class {n;1}.

Definition 4. 3: Two elements x,x’ € {n;1} are equi-
valent (v ~ x’) if there exist operations P, € C,,P; € Cy
such that P, X P,x = x’. We denote by {x } the class of
diagrams which are equivalent to x.

Definition 4.4: The symmetry number S(x) of
x € {n;1} is equal to the number of operations P, X Py;
P, eC,, Pge Cy with P, X Pyx =x.

Lemma 4.2: If x ~ x',then S(x) = S(x’). For fixed x
the operations P =P, X P, P, € C,, Pz € Cg,can be
grouped together into groups of S(x) elements such that
Px = P’x if and only if P and P’ belong to the same
group.

Theorem 4.2: The equivalence relation (Definition
4.3) divides the class {z;1} into subclasses {x} of dia-
grams giving the same contribution. The number of ele-
ments of {x?is equal to n 112 _ (m!)'m1 1 X[S@)] 1.

The symmetry number can be calculated by S(x) =
S,(x) X Sg(x). Here S,(x) is equal to the number of
operations P, € C, with P, x =x,and Sy(x) is given

by the number of operations P, € Cy with the property
that there exists a P, € C, with P, X Pgx =x. Our
results can be summarized by the following rules.

Rule 4. 1: Construction of diagrams: A diagram con-
sists out of one double beam and any number of simple
beams. The simple beams are ordered at the rhs of the
double beam in such a way that the number of points of
the simple beams does not decrease as we go from left
to right. Each diagram is completely connected by
directed contraction lines. In each point of a beam
there starts exactly one line and there ends exactly one
line. No closed loop of contraction lines may touch a
given beam more than once.

Rule 4.2: Ewvaluation of diagrams:

(i) Label the points of the diagram in such a way that
different points carry the same label if and only if they
belong to the same loop.

(ii) An n-point double (simple) beam carrying indices

f3,...,%, represents afactorx'il“_in (xil"'in).
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(iii) Sum over all indices and multiply by S x (—1)¢*7
Here ¢ (r) denotes the number of loops (points) of the
diagram and S denotes the symmetry number.

The quantity (d/dB) G(B) |, is given by the sum of the
contributions of all inequivalent connected diagrams.
In Fig.3 we have given all diagrams containing up to
four points. We have omitted the directions of the lines
where they are not necessary, and we represent a loop
which contains only one point by the point itself, Using
our method, we have checked the contributions to ( i)
evaluated in Ref, 19.

5. RENORMALIZED EXPANSION FOR AN INFINITE
SYSTEM

In the limit A — «© it is possible to resum the L.C.E.
in such a way that the result is expressed by two analy-
tic equations.1® This is due to the fact that in that limit
most of the diagrams vanish, as is shown by the follow-
ing considerations.

Definition 5.1: A connected diagram is called simply
connected if we cannot cut any closed loop by two cuts
without dividing the diagram into disconnected pieces.
Otherwise the diagram is called multiply connected.

Lemma 5. 1: 1f the asymptotic order of magnitude of
x,-’l,_,,- for any n is equal to A~, then the asymptotic
order’ of any simply (multiply) connected diagram is
equalto Ax (A"K K = 1),

Lemma 5.1 expresses a well-known fact, the proof of
which rests upon the properties of the cluster integrals
(see the Appendix). It implies that in the limit A — ©
we can neglect all multiply connected diagrams (provi-
ded that the L.C.E. converges uniformly in A). Besides
this in an infinite system the x,(8) vanish identically by
virtue of momentum conservation,

The structure of a diagram which contributes in the
limit A — «© is shown in Fig.4a. The shaded boxes de-
note insertions, i.e., simply connected diagrams which
instead of a double beam contain one external point with
fixed index (Fig.4b). We explicitly admit the trivial in-
sertion which contains no beam.

e o b
=

-112

=

+1 -1 +112

| s el el

+1/6
+1 -1 12 -1/2 +1/24

FIG.3. All diagrams up to the order of four points which contribute
to (0). Below each diagram there is given the corresponding sign and
symmetry factor.

FIG.4. a) Structure of a diagram contributing in the limit A —» © .,
b) Examples of insertions. These diagrams contribute the following

terms: + 13— 25,%;;5 42

D Xy Xy
i Jyy T3,
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Definition 5.2: The weight factor g; is given by the
sum of all inequivalent simply connected insertions in
which the external point carries the label ¢, The dia-
grams are to be evaluated according to rule 4.2, and
the external point has to be counted in the sign rule.

With due regard to Definition 4.4 of the symmetry num-
ber, it is straightforward to prove the following theorem,

Theorem 5.1:

=3 4 5
<®>—EdBJ,

i

n
I 0
K=1 gtﬁ

(5.1)

;1...1n

The weight factor g, obeys the equation

o] 1 n

g =1- — i, &0 185 (5.2)
Equation (5.2) can be proved by induction with respect
to the number of cluster integrals. In that proof the
directions of the lines are important as they establish
a one-to-one relation between the terms found by itera-
tion of Eq. (5. 2) and the insertion diagrams: I the line
that starts at the external point ends at the beam
Xij aenj , then the diagram contributes tox;; . ., Xg;

n 1 n

[1%_,8;,. Theorem 5.1 establishes the renormalized
cluster expansion. It holds independently of the form
of ¥ or of 0.

A comparison of Egs. (5.1) and (5. 2) shows that g; can
be interpreted as the expectation value of an operator
which fulfils the relations [see also Ref. 19, Egs. (44)~(46) ]

=0, (5.3)

(5.4)

R\
I

n
- xil"'in{KZ=>1 6“1{ } .

If we use a special form of ¥ such an operator can
easily be identified [see Eq. (6.1) and the Appendix].

Theorem 5.2: If ¥ is represented in the particle—
hole form ¥ = exp(S) ®(see the Appendix for a precise
definition), the weight factor g, becomes equal to the
occupation probability p; =(¥ | aja, | ¥)A¥ | ¥) of
the Zth single-particle level.

The renormalization by occupation probabilities is a
well-known concept in perturbation theory. In the
framework of a cluster expansion, it has first been put
forward by Providencia and Shakin.15 Equation (5. 2)

is implicit in the approach of Feenberg and Wu [see
Ref.12, Eq. (14)] who used it as an ansatz for establish-
ing the 1.Y. expansion in the limit A — ©, These
authors, however, did not realize the important role the
quantity g, plays in connection with partial summations.
From an analysis of the first five orders of the factor-
ized 1.Y. expansion and from an inspection of the results
of Refs. 12,15, the equations (5.1) and (5. 2) were
recently proposed by Ristig and Clark,19.20 indepen-
dently of the present author. These authors also give

e + 0 +O +

ng

FIG.5. All diagrams up to the order of two internal points which con-
tribute to p, ; .
172
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an interesting formulation of the renormalized expan-
sion which exhibits a relation to expansion methods
used in statistical mechanics.

6. RENORMALIZED EXPANSIONS FOR A FINITE
SYSTEM

We discuss two different possibilities of generalizing
the results of Sec. 5 to finite systems. In subsection 6A
we sum up all diagrams which contain a fixed z-point
double beam. This procedure is useful only if the re-
sulting weight factor has a physical meaning, and we
therefore restrict our discussion to the particle—hole
form of ¥. In subsection 6B we give a representation
of { ©) by skeleton diagrams with renormalized lines
which is applicable to any form of ¥.

A. Summation of all diagrams containing x',-l. ce iy

We first evaluate the expectation values Pi.. of the
n
operators P; ...; = Qe @i Gy oen a; with respect
n n n
to ¥ = exp(S)®. Denoting the corresponding differen-
tiated cluster integrals by x;' ... ’# ,we find from
Appendix A2 voom

m
Bt = sy L 2 Oy, (6.1)
n
fpeeedy
le...j:" = 0,, ? Krzll Gip(x)jx’ nz=2, (6.2)

In Eq. (6. 2) the sum ranges over all permutations P of

the numbers 1 ton. Due to the simple form of Egs. (6. 1)

and (6. 2) we can represent Di by diagrams in which
n

the double beams are replaced by external points.

Lemma 6.1: The expectation value piL... iy is given

by the sum of the contributions of all inequivalent dia-
grams containing » external points #; to ¢, ordered in
such a way that ¢, stands below i, if 1< K. Both in cal-
culating the symmetry number and in defining the equi-
valence of diagrams we are not allowed to permute the
labels of the external points. The diagrams need not be
connected. They must be connected, however, if we con-
nect the external points by a beam.

In Fig. 5 we give the first diagrams contributing to
pz.li . We should note that in going from the representa-
2

tion employing double beams to the representation using
external points the symmetry number is altered. This
effect can be handled by splitting the symmetry opera-
tions P, X Py into one factor which does not affect the
points of the double beam and an other factor which
affects only these points. Defining p7 ...; ,7 =< 2,by

the sum of the contributions of all connected diagrams
with the external points i, to ¢,,we find from Lemma
6.1 (see also Fig.5)

— [4
by, = PilPiz * Dy (6.3)

— o3 4 (4
pi1i2 i3 - pilpiZPiS + pilpizifi + piZPicliS + piapiliZ + pili2i3 ’

(6.4)
and so on. We will come back to these results in Sec. 7.

Turning to the evaluation of the expectation value of a
general operator O, we first discuss the contribution
o(1) of the set {@ } of all diagrams containing a one
point double beam. Substituting the double beam by the
external point () we establish a one-to-one mapping
¢ of {a} onto the set {P,} of diagrams contributing
to p; . If the contribution of y € {a% is equal to
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y = 2J; %A, , then the contribution of f(9y is given
by f (”y = A Since the range of & exhausts the set
{P;},we find

oll) = E x;p]..
j

The contribution to (0) of the set of all diagrams con-
taining a z-point double beam (» = 2) can be evaluated
in the same fashion, using however the diagrams con-
taining the double beam p‘l ;" and evaluating the dia-

grams by virtue of Eq. (6. 2) We find the following re-
sult.

(6.5)

Theorem 6.1: The expectation value of any operator
O with respect to ¥ = exp(S)® can be represented by

d < |
= “ J + —_ ! . b, -
(@ Zz) g ' n§1 n! i,§in xl’-""n ‘D‘l"‘ by
(6. 6)
Applying Theorem 6.1 to P, and using Eq. (6.1),we find
1
h=1- nEO n! ]'IEJ,, xijl.“jn pijl'“jn (6.7)
Introducing into Eq. (6. 6) the quantities
o d
X.'l...in =X iy, +x,~ KZ:%[ B i& . (6.8)

and using Eq. (6.7), we find a representation of (0) where
also the term (d/dB)J; | 3. is renormalized:

=22

. Xbs
= 2 Xy jowri Doy

1
n: ...
L A

M:r-

+ (6.9)

i
[

n

Equations (6. 6) and (6. 7) are generalizations of the re-
sults expressed in Theorem 5.1 and Eqs. (5.1) and (5. 2).

Equation (6.9) resembles a result given by Providencial3
in the framework of his nondiagonal cluster expansion.
Equations (6. 6), (6. 7), and (6. 9) hold identically, irres-
pective of convergence problems. This is proved by
noting that these equations can be derived directly from
the unlinked cluster expansions of the expectation values
involved.

B. Summation of insertions

Any part of a diagram which does not contain the double
beam and which can be separated from the rest of the
diagram by two cuts affecting one closed loop is called
an insertion. We close the cut loop via an external point
which is drawn left of all beams. We explicitly admit
the trivial insertion which consists only of the external
point with the attached contraction line and which gives
the contribution (+1). The sum of all insertions con-
taining the external point (i) is denoted by g;. In the
special case A — ® this definition coincides with Defi-
nition 5.2. A diagram which does not contain any non-
trivial insertion is called a skeleton diagram. A skele-
ton insertion is defined to be an insertion which can not
be separated into two nontrivial insertions by twice
cutting one closed loop.

Theorem 6.2: The expectation value (O) is given by
the sum of the contributions of all inequivalent skeleton
diagrams where each line with summation index i
carries a factor g;. The weight factor g, is given by
the sum of all inequivalent skeleton insertions where
each line j is renormalized by a factor & except for
the line sfarfing at the external point. The symmetry
number and the equivalence of diagrams are defined in
exactly the same way as in the unrenormalized theory.
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The proof of Theorem 6. 2 is simplest if one first de-
rives the corresponding results for the labeled diagrams
introduced in Sec.3. The results for unlabeled diagrams
then follow trivially since the symmetry operations de-
fined in Sec. 4 are not affected by introducing renormali-
zation factors.

In Fig. 6 we give the first terms of (0) and of g; as
determined from Theorem 6.2. Theorem 6.2 is another
generalization of Theorem 5. 1. It holds for any form of
¥. Using ¥ = exp(S)®, we find from Lemma 6.1 that the
factor g; coincides with the occupation probability p;.

7. SOME SIMPLE REMARKS ON THE CONVERGENCE
PROBLEM

Since for A = «© the cluster expansion can be expressed
analytically, it does not seem hopeless to discuss con-
vergence questions, at least for infinite systems. Here
we will not tackle that problem but rather point out
some fairly obvious facts which may shed some light
on certain questions involved in a rigorous treatment.

We restrict ourselves to finite A and we define a func-
tion H(B,n) by [see Eq. (3.1)]

A
HB,m)= 22 1" 2
n=1 { N

s{1}.

We have the relation IR(8) = 1 + H(B, 1), and H(B,n) can
be constructed from I2(8) — 1 by the substitution

.in(B)_)ﬂnx, in(B)‘
For our purpose we can replacex; .., (B) by
n

e, T Bx;l... i,»2nd as a consequence H(B,n) is a
polynomial of finite order in § and 7. Since H(0, 0)
vanishes there exists a neighborhood in C X C of
(8,7m) = (0,0) in which In[1 + H(ﬁ,rp)] can be expanded
into an absolutely convergent series 2,2, n%a, (8). It
is easily proved that this series represents the L.C.E.
in which the substitution (7. 2) has been carried through.
By differentiation with respect to 8 we find that the
radius of convergence of the L.C.E. of the expectation
value in the complex 7 plane is determined by that solu-
tion of the equation

Fn)=HO,n) +1=0

which is nearest to 7 = 0. The radius of convergence
depends only on ¥ and not on the operator involved. This
result, however, may be a special feature of the finite
system.

(7.1)

(7.2)

(7.3)

Using the form ¥ = exp(S) &, we can introduce the para-
meter 7 into the wavefunction itself by the substitution
S(») — yn/28(n) . 1 = 0 [see Appendix A2],and the L.C.E.
for 1 = 0 becomes identical to the expansion of

F(miol¥m)/Kele)+{¥m) — &%) — )]
+ + + + +
NN
b ©+ Q + g:? +

FIG.6. a) First diagrams which in finite systems contribute to (9)
according to the renormalized expansion. b) First diagrams of the
expansion of the renormalization factor. All but crossed lines are re-
normalized. Renormalized lines containing only one point are repre-
sented by the point itself. The directions of the lines are only given
where they are important.

(7.4)
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in powers of . (This result shows that the methods used
in Refs.9, 10 give the same expansion as our method.)
The coefficient of 7% in F(n) is equal to (x# | x*) = 0,
where y* denotes the (unlinked) k2-particle k-hole ampli-
tude of ¥, Thus F(1n) has the following properties:

(i) F0)=1;

(i) F1)=(¥|¥);

(i) |F)—1l=<F(in])—1;
(iv) d/an)F(n) = 0 if n = 0.

Using these relations, we can establish the following
lemma.,

Lemma 7.1: The L.C.E, converges if (¥ | ¥)< 2,
The expansion diverges if (¥ | ¥) > 24, Better esti-
mates cannot be obtained without restricting ¥. (Note
that ¥ is normalized according to (¥ |®) = 1).

In view of Eq. (7. 3) the first part of that lemma isproved
by noting that (¥ {¥) < 2 implies | F(n)— 1l= F(|n})—1
= F(1)— 1< 1,if |p] = 1. The second statement is oh-
vious if we represent F{) by

Fim =11

Mo am\(m  an \UEH(E N
m=i\la,| le,l/\la,| la,l)i=1 \b,
1.5)

Here the quantities @,,,a},, m = 1,..., M denote the
pairs of complexzerosof F{(n) andthe (—b,),/=1,...,
A — 2M denote the zeros on the negative real axes. In
deriving Eq. (7. 5) we have used properties (i) and (iv).
The estimates cannot be improved without restricting
¥ as is shown by the examples F(n) = 1 + n¥X and
F(n) = (n/(1 + €) + 1)4 ¢ > 0, respectively. Note that
the results of Ref. 21 are consistent with the estimate
(¥ ) < 2.

Equation (7, 5) shows that the L.C.E, will converge for
(¥ |¥) ~ 24 only if the zeros of F(n) are concentrated
near the unit circle. We see no reason why in physical
applications F(n) should show that behavior, and we be-~
lieve that the upper bound of the radius of convergence
established in Lemma 7.1 is much too big. In view of
the first part of Lemma 7,1 we feel rather pessimistic
concerning the convergence of the unrenormalized ex-
pansion in physical problems. The convergence proper-
ties of the renormalized expansion may be much better,
This hope is based on the observation that the renor-
malization partially resums the expansion of the nor-
malization denominator in Eq. (7.4). Besides this the
identity (6. 6) also seems to favor the renormalized
theory.

In the limit A — © a necessary condition for the conver-
gence of the cluster expansion is given by the equation
Hm ., Pi i = %4 b;, which is found by a com-
parison of Egs. (5.1) and (6. 6). Equations (6.3) and (6. 4)
show that this condition is equivalent to the vanishing of
p;’l vi 3 which in the diagrammatic representation em-

ploying double beams contains only multiply connected
diagrams. This condition seems to be directly related
to the short range nature of the correlations which is
assumed in the cluster expansion. The B.C.S. wavefunc-
tion, for instance, violates it because of the long-range
correlations between certain pairs of particles.

8. COMPARISON WITH OTHER APPROACHES

We have shown that the 1.Y. expansion has a very simple
structure. This fact, however, to some extent is compen-
sated by the relatively complicated structure of the clus-
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ter integrals. The n-point cluster integral contains
parts which describe a product of several clusters of
less than n particles which are bound together by an
exchange of single-particle functions, We can isolate
these “reducible” parts by defining nondiagonal irredu-
cible clusters13.19 (see Appendix A1), and the terms of
the L.C.E. developed here can be absorbed as diagonal
elements into an L.C.E, in terms of products of these
irreducible clusters. This idea is systematically carried
through in Ref. 13, and it is implicitly used in Ref. 14,
Compared to the 1.Y. expansion, it has the advantage that
the cluster integrals are simplified without complicating
too much the L.C.E. in terms of these quantities. (How-
ever, there are indications that the renormalization is
more complicated.)

On the other hand this treatment mixes the effect of

the normalization of the wavefunction with the effect of
the antisymmetrization. Indeed, the reducible parts of
ETI {B) are present already in the unlinked expansion

and vanish if we omit the antisymmetrization operator in
Eqg.(2.1). The diagrams containing several cluster inte-
grals, which are mixed with these reducible parts, arise
by transforming the unlinked into a linked expansion.
From the discussion of Sec. 7 it is clear that we equiva-
lently can interpret these diagrams to be created by
dividing out the normalization denominator (¥ |¥)-1 and
thus these terms keep track of the normalization. They
occur independently of the symmetry of the wavefunc-
tion. Thus we believe that there is no reason to treat
these two types of terms on the same footing,

Especially we feel that it is a good procedure to renor-
malize the expansion in the way given here as we thus
resum diagrams which are created by the same physi-
cal effect, In connection with variational methods the
renormalization most probably will resolve the “Emery
difficulty,” 22 which is caused by the fact that in the
lowest order of the 1.Y. expansion there is no mecha-
nism which prevents the trial wavefunction from build-
ing up an arbitrarily strong correlation within the inter-
action region of each pair of particles, and thus gaining
an indefinite amount of binding energy. Clearly the re-
normalization would supply us with such a mechanism
as it takes into account the norm of ¥, which also in-
creases if we build up such a correlation. In a further
publication we will come back to these problems, which
are related?.15 to the self-consistence of single-particle
energies used in Brueckner theory.
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APPENDIX: DIAGRAMMATICAL REPRESENTATION
OF THE CLUSTER INTEGRALS

1. Product form of ¥

Irrespective of the nature of the symmetric operator ©
the reduced subnormalization integral [Eq. (2.4)] sym-
bolically is written in the form

CEyy oo, By >
" = 2 sgnP 11
Kyon Ky px, k) gn f ;

X [dig} () et VDo, ()77 (8)]

m <Ky, ewo,Kp>
x Il

B=1 < esv<§

* . .
f?}. ..."{n(zlr * "’zn)
1 n
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()¢; i -
x 80 Gt ol g (A1)

i (E1500051,).
Here 0(™ is the m-body part of © and the symbol 7 de-
notes the image P(¢) of the index 7 under the permutation
P of the set {K,,...,K, }. The correlation functions by
definition fulfil the symmetry relations
Siprwi By e stz =i .y (g5 000yd,) for all P{1,...n}.
In the diagrammatic representation a simple (double) k-
body link [Fig. 7a (b)] connecting the points ¢, to 7, rep-
resents a factor ff:“_TK(il, ceey iK)f,.ln_,-K(il, cenyig)—1

g ey X 0Oy, L, )
xfil"'ix(il’ ceesig)].

A[crossed] directed line connecting the point Z to the
point ¢ represents the integration over the coordinates
of the ith particle with the weight factor ¢ () ¢; (?)
[@F 3) 0 (3) ¢, (i)]. The lines thus fix the permutation
considered. The cluster integral x; ...; is given by

the sum of the contributions of all different connected
diagrams which are constructed according to the follow-
ing rule,

Rule A1: (i) Draw » points labelled from left to
right by 7, to Z,. (ii) Draw a structure of directed lines
such that in each point there starts and ends exactly
one line, respectively. (iii) Draw any number of simple
r-body links (1 < » < ). An 7-body link connecting a
definite set of points may occur only once. (iv) Each
point must be connected with at least one link,

The rules for evaluating a diagram are obvious., The
sign is given by (— 1)»~¢ where [ is the number of
closed loops of integration lines. In Fig. 7Tc—e we pre-
sent some examples which give the following contribu-
tions:

© [ay(lfm12—-1le, 2,
@ — [dyd,[£7@)f, @) — 1[5, £, (1,2) - 1]
xeoe, Mo @ e (2),
(@) — [aydyl}, (1,20, (1,2) - 1]
x| o, (112 92 @), @] dyd,[£]; 3,4

x fi3i4(3’4) — 1} ‘Pi4(4) |2 ‘Pi: (3) R (3).

Evaluating the expectation value of 0™ m = 2,we de-
termine x;l ...i s n = m,by the rules given above ex-

cept that we ad’(‘i the statement: (iiia) Each diagram con-
tains exactly one double m-point link. If we are con-
cerned with the expectation value of a one-body operator,

’ 3 ’ —_
then xilm i is given by x"x""'n = Xil"'in— xil"'in

k=1 (ig |0 iy), where X, . ,; is constructed accord-
ing to Rule A1 altered in the following respects. (iia)
Exactly one line is crossed. (iva) If n = 2, the starting
point of the crossed line may be excepted from state-
ment (iv). Depending on the exact choice of ¥ these
rules can be considerably simplified.

We now use that representation to exhibit the asymptotic
behavior of X .oi 0@ proof of which to our knowledge has
not been given in the literature. In the limit A — © the
functions ¢; are taken to be plane waves and by virtue
of momentum conservation all f;(7) are identical to one.
All one-body links are zero and the directed line (i)
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FIG.7. a,b) Basic ingred-
ients of the cluster integ-
rals for the product form
of ¥, See the text for a
definition. ¢) to e) Exam-
ples of diagrams contri-
buting to x; TIRR
®iyi,i1, , respectively.

; i " i i -
i‘ "9_2 2 > Jia

carries definite momentum k;. We use the term “irre-
ducible” cluster to denote any part of a diagram which

is completely connected by links and which is not a part
of a bigger structure with that property. Each diagram
contributing tox; , ; containsm, 1 =m =< n/2 irredu-

cible clusters. A typical diagram containing two irredu-
cible clusters is given in Fig.7e. By virtue of the short
range character of the correlation functions and of the
normalization { ¢; | ¢,) = 1, the integration over the (r)
coordinates of an irreducible cluster yields an expres-
sion of the asymptotic order Q177 = p7-1A1"” where

Q and p denote volume and density of the system, res-
pectively., Furthermore, conservation of momentum
yields a & function 6[ 27 kin — 2 kout] where kin (kout)
denotes the momentum of an ingoing (outgoing) line. It
is easily proved that exactly (m — 1) of these 6 functions
are independent, As a result any term which contributes
to Xy iy and which consists of m irreducible clusters
asymptotically behaves like p»~™ A™™ and in addition
contains (m — 1) independent & functions connecting the
indices 7, to ¢,. Similar results can be deduced for the
differentiated cluster integrals. The asymptotic beha-
vior of xir"in as derived here, underlies Lemma 5, 2.

The irreducible clusters constitute the basic quantities
of the L.C.E. constructed in Ref. 13.

2. Particle-hole form of ¥

This form of ¥ is defined3.15 by ¥ = exp(S) & where,
in obvious notation, ® = a’;- - -a} |0) is the unperturbed
ground state and S is given by S = 252, S®@,

S(") — 1
(n!)z il...iniA
b]"'bn>A

beeiby s .
Sh % gt ...at a;, -0 q,; (A2)
Beeei, by b7y ‘e’

Tere by Tesob, oo h Y
SiLIEE = sgnP ST = sgnP SLIn = SRR (AS)

for all permutations P{1,...,n}.

The wavefunctions ¥, . are defined in obvious
1

fashion, We introduce pai;'ns of points connected by a
(not directed) vertical line to represent the states i, .
The diagrams contributing to Xiwni are constructed

and evaluated according to the follo(zving rules (see also
Ref. 13).

Rule A2: (i) Draw n pairs of points which from left
to right are labelled by the indices #; to i,. (ii) Each
lower (upper) point is touched by exactly one hanging
(standing) link. (iii) In each lower (upper) point there
starts (ends) exactly one directed contraction line.

Rule A3: (i) Label the lower (upper) point of the pair
i, by a, (b,). (ii) A hanging (standing) link connecting
the points ¢ K, to ¢, contributes a factor S?fll-::;zK’

ves 4 r

(Stkx""" PK+ *), (iii) A directed contraction line connecting

K K
the i)ointg a, and b, contributes a factor 6,, ,,. (iv)
Sum all indices a,,b, independently over all states
a > A and multiply by the factor (— 1)*~fc"1. Here !l is
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FIG.8. a) Diagrams contributing to the (not differentiated) cluster
integrals for the particle-hole form of ¥. b) Diagrams contributing
to the differentiated cluster integrals.
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the number of closed loops consisting out of contraction
lines and nondirected lines connecting a pair ¢,,and o
is the symmetry number.

The equivalence of diagrams and the symmetry number
are defined below. In Fig. 8a we give some examples
which give the following contributions:

ISt ¥ oshistsneat, B
a>A ' ’a1a2>A 172 hate aa,>A
A diagram is called connected if we cannot separate it
into two parts without cutting a line or a link (or a beam
representing the operator). The cluster integral

X is given by the sum of all inequivalent connected

a; qax* ga, ¥
§%18%" %1
74 Uiy

ipeeei,
diagrams.

In order to represent the expectation value of the (sym-
metric) m-body operator

2
P »
m!/a.ca, b 8

m BB
(V] e a’ c..at a, +-.a Ad
Cyrer oy, ByetBy, Tay %m Boy By (A4)
we again introduce the quantityXi‘_”,-v =x; ..; *t

n 1
Xy X 20%e 0; ,i,»Where the last term contributes
1 n ’
only if m = 1. X, _ ., is given by the sum of all inequi-
1 n

valent connected diagrams constructed according to the
following version of Rule A2, We add: (ia) Draw a hori-
zontal beam with m points, In each point of that beam
there ends one contraction line starting at a lower point
i, and there starts one contraction line ending at an
upper point 7;. We alter (ii) into (ii’): Each lower (upper)
point is touched by at most one hanging (standing) link.
It must be touched by a link if it is not connected to the
horizontal beam by one contraction line. Examples are
given in Fig. 8b.

From X i the trivial diagram (Fig. 8b, the first diagram)
has to be excluded. The contribution of a diagram is
calculated according to Rule A3, supplemented by the
following statements. (ia) The line ending (starting) at
the jth point of the horizontal beam is labelled by

B; (a;). The beam represents (')m1 Y S (iiia)
Use the corresponding 6 factors to eliminate the «, and
3,- . If a point o ; (ﬁj) is contracted with a point i, not
attached to a link, the § factor is GiKaj (GiK 8 ); otherwise

-
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it is GbKaj ©®, B; ). According to these rules the contri-
butions of the last three diagrams of Fig. 8b are given by
Z; S?*ob,i’ - Z; S‘ilz* Sgllizz o'val’

%,
1 2
b>A a1a2>A

1 b,bo*
1 Z; sillizz
a1a2b1b2>A

5?11i22 Oblbz’ a,e,°

By virtue of the symmetries of © two diagrams which
differ only in the ordering in which the contraction lines
are fixed to the m-point beam are taken to be identical.
Taking into account the symmetries of S(») we can
characterize the symmetry operations P, which leave
the contribution of a diagram unchanged in the following
way: (i) Permute the labels a;, b, among themselves in
such a way that we interchange only labels which are
attached to the same link, (ii) Shift the points along the
links with the contraction lines fixed to them in such a
way that the original labelling is restored. Two dia-
grams X and X’ are equivalent if there exists a P with
PX = X'. (Remember that the ordering in which the
lines are attached to the beam is irrelevant.) The
symmetry number o(X) is equal to the number of opera-
tions P with PX = X.

According to these rules it is easy to prove that the
cluster integrals x',-l__,,- corresponding to the operators
r

P, i, = azl- . -a;maim :++a; are given by Egs. (6.1)

1
and (6. 2).
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We present a new functional integral approach to the average density of states of a quantum particle
in a random potential. As an illustration of the method, the formulas are explicitly evaluated for
some one-dimensional problems; results previously obtained by other methods are recaptured. The

formalism for the study of wavefunction localization is also derived.

I. INTRODUCTION

In recent years, and probably because of the technolo-
gical importance of amorphous solids, a great deal of
work has been done on the electronic structure of dis-
ordered materials. The natural starting point for an un-
derstanding of their properties is a knowledge of the one-
electron spectrum, and the nature of the associated wave
functions. In crystalline materials, the Bloch- Floquet
theorem immediately reduces the study of the whole
crystal to the study of one elementary cell, thus reducing
the difficulty enormously. Unfortunately, no analogous
theorem exists for the disordered case, and one is con-
fronted in principle with the formidable task of diagona-
lizing a random matrix of order 1023. Several methods
have been developed to deal with this problem, but the
mathematical difficulties involved are of such magni-
tude that our understanding of the problem is still far
from being satisfactory.

A few idealized problems in disordered materials are
at present known in which the energy spectrum (but
generally no transport properties) can be computed exact-
ly. Dyson! found the frequency spectrum of a linear
chain of oscillators with random masses and spring con-
stants (equivalent to the density of states of a one-dimen-
sional tight-binding alloy with nearest neighbor hopping,
and with random on-site energies and hopping elements),
Frisch and Lloyd2 derived the electron spectrum in a
random set of 5-function potentials on a line, and Hal-
perin3 solved the same problem for a random one-di-
mensional potential which may have an arbitrary prob-
ability distribution at any given point, but must have the
property that any two points are statistically indepen-
dent. In the same paper, Halperin also sets up the for-
malism for transport properties, but does not do any
actual calculations. The formulas are hard to evaluate,
even with modern electronic computers.

In three dimensions, the only exact solutions are the
density of states found by Lloyd4 for the tight-binding
alloy with a Lorentzian distribution for the on-site energy,
and a generalization thereof studied by Eggarter, Cohen,
and Economou,® in which they have incorporated short-
range order in the Lloyd model. In both cases the pos-
sibility of solving exactly is due to a particular property
of the Lorentzian distribution (only one pole on each side
of the real axis), and the elegant result obtained (average
density of states = pure crystal density of states con-
voluted with probability density for on-site energy) is
only valid in this special case and provides no help for
understanding other three-dimensional situations.

Among the approximate methods, the most widely used
is certainly the “coherent potential approximation”
(CPA),6.7 which in several cases seems to describe the
overall band structure reasonably well. But it fails near
the band edges (the most interesting region in semi-
conductors); it has also been shown recently8 that in the
strong scattering limit the density of states of a binary
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alloy has considerable structure in the center of each
subband, a fact which is not even qualitatively described
by CPA.

The determination of transport properties involves
even greater difficulties than the energy spectrum,
since in addition information on the wave functions is
required. Mott, and Cohen, Fritzsche, and Ovshinsky?
have conjectured that a disordered material exhibits
energy bands inside which there are “mobility edges”
separating extended from localized states. Considerable
effort has been devoted to prove this conjecture, but no
clean proof has so far been given. Anderson's original
work,10 and several extensions thereoff,11:12 are based
on the idea that the convergence of a certain renorma-
lized perturbation series is equivalent to localization of
the eigenstates of the Hamiltonian under consideration.
The energy enters as a parameter in the series, so that
the determination of mobility edges reduces to finding
the energies at which the series changes from conver-
gent to divergent. This idea can not be rigorously true;
in the case of a one-dimensional tight-binding nearest-
neighbor -hopping perfect crystal the eigenstates are
extended (Bloch states), while the renormalized pertur-
bation series reduces to a finite sum (just two terms)
for this problem. It has also been attempted to decide
the question of localization by studying some appropriate
series or other expression for the ensemble averaged
Green's function {(G(E)). These efforts cannot be fruitful;
it was shown recently® that the process of averaging
over an ensemble of potential configurations destroys the
information on the localized or delocalized character of
the wave functions contained in G(E). Percolation theory
has also been used to study localization. For a classical
particle in a random potential the Mott~CFO conjecture
is eagy to understand; 13 the mobility edge coincides
with the percolation threshold. But the percolation treat-
ment neglects interference phenomena, which may be
important. Consider as an example the one-dimensional
problem with a potential V(x) bounded from above. Let
Vo = sup{V(x);— o < x < w}. Borland14 has shown that
all states are localized in one dimension, so that no mo-
bility edges exist. But the percolation threshold exists
and is at V,. The localization here is due to the wave
nature of the particle, which percolation theory does not
describe. The same considerations apply to a three-
dimensional separable potential V(r) = V(x) + Vy,(y) +
V4(2).

It is the authors belief that new mathematical methods
will eventually have to evolve in order to provide a
better understanding of the above questions. K this
belief is correct, the search for new approaches to the
problem constitutes a worthwhile effort,

In this paper, we present one possible alternative
approach, based on a conceptually very simple idea. For
an arbitrary wave function y(r), the potential V(r) which
has ¢ as an eigenstate of energy E can be written down

Copyright © 1973 by the American Institute of Physics 1308
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immediately by solving the Schrédinger equation for
V(r). If, moreover, a probability density is given in the
space of all possible potentials, this can be converted to
a probability density in y space. Integration over all of
Y space with fixed E then gives the density of states,
while integration over some selected subset in ¢ space
(integration over all “localized” states,for example)
could given information on the nature of the wave func-
tions. The mathematical difficulties in carrying out
this program will of course be considerable, and have
not yet been fully explored.

In Sec.II, we set up our formalism: an equation for the
average density of states as an integral over Y space is
derived. The way in which the functional integrals can
be evaluated as the limit N — o of N-dimensional inte-
grals is discussed. In Sec. I, we consider as specific
examples two one-dimensional problems, and show that
our formalism permits to recapture the exact solution
of the Dyson problem as given by Economou and Papa-
triantafillhou,15 and the Frisch and Lloyd solution?2 of
the 8-function problem. In Sec.IV,we discuss the ques-
tion of localization in the present context without being
able, unfortunately, to work out any specific examples.

Il. FORMALISM
We consider the Schrédinger equation
— VY + V(e)y = Ey (1)

and suppose for simplicity that (1) has to be solved in a
finite volume Q with some appropriate boundary con-
dition on Y at 3Q. For a given V(r), the density of states
is usually expressed in terms of the Green's function

G(z,V(r)) = (z —H)? (2)
by the well-known equation
p(E,V(r) = — (1/7) Im TrG(E*, V(r)). (3)

We will be interested in the case that V(r) is a ran-
dom function, and our aim will be, among other things, to
compute the average density of states

P(E) = (p(E, V(r))). 4)

The fact that V(r) is a random function can be stated
mathematically by saying that a probability measure du
has been given on the function space X of all possible
potentials V(r), so that for any subset U C X

Prob[V(r) € U] = [, du. (5)

In order to make our formulas more transparent, we
will also use the notationl6

du = f[V()ID[V(r)], (6)

suggesting that a probability density f[V(r)] is associated
with each point of X. In this notation D[V(r)] stands for
a “volume element” in the function space X.

The average density of states can then be written as
1
p(E) = — = [Im TrG(E", V(r))f [V(r)1D[V(r)]. (7)

One difficulty in the explicit evaluation of (7) is that
the functional G(z, V(r)) cannot be written down explicitly.
Perturbation expansions for G, moreover, are hard to
handle because G has closely spaced poles on the energy
region of interest.
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The alternative approach we want to propose is based
on the observation that, although the computation of the
eigenvalues and wavefunctions for a given V(r) is dif-
ficult, the inverse problem is trivial. If a wavefunction
¥ and the corresponding energy E are given, the potential
which gives rise to ¥ as an eigenfunction of energy E is,
according to (1),

Vir) = Ay/y + E. (8)

Using this fact we can derive an equation for p(E) as
an integral over the space Y of all possible wave func-
tions Y(r).17 Equation (8) defines a mapM:Y X R = X;
it assigns a potential V(r) to each pair (¥, E). This map
will not be one-to-one since for a given V(r) there exist
infinitely many eigenfunctions. However, for a suffici-
ently small neighborhood A of any point p = (y,E) €Y
X R the correspondence between A and M (4) given by (8)
is one-to-one.18 We define a measure diion Y X R by
the condition that for any such sufficiently small set A

fA di = fM(A) T 9)

This measure can then be extended to all of ¥ X R in
the usual way. In our more explicit notation we write

daii = f[viwtr), ENIJ D dE, (10)
where J = J(, E) is the appropriate Jacobian of the
transformation (8).

We will now prove that
p(B) =5 [y f[Viw, EY]1J D[], (1)

For this purpose, let us define as V (E;) C X the set
of all those V(r) which have exactly & eigenvalues below
E,. Obviously

VAEY NV (E,) = ¢(= empty set) if k= k', (12)
0
U VvV.(E, =X. 13
B viEy (13)

We define the integrated density of states JUE ,, V(r))
by

WEq, V(r)) =k ifV(r) € V (Eo); (14)

this quantity is related to the average density of states
in the usual way

(UE o, V(rY)y = [0 p(E)dE.

Consider next the integral

1 - E
FE) = 3/ yxtwe B = 5 [on dE [y F[VW, ENITIDW].
(16)

As the point (y, E) sweeps out the region ¥ x (— o, Ey),
each V(r) € V (E ) will appear exactly 2k times as an
argument in f, since it appears each time p coincides
with one of the eigenstates (y;, E,) of V(r), and there is
a trivial deneneracy between + y; and — Y ; which

accounts for the factor 3. Therefore,using Eq.(9), we
can write

(15)

2k ka(.Eo) dl“L = kz=;0 ka(EO)
WEg, V(rNdp = [y WUEq, V(£))dp = (FUE,, V(). (17)

Combining Eqs.(15),(16),and (17) we have established
the validity of (11).
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Equation (11) has a clear geometrical meaning: the
integrand f[V(y,E)]|J | represents the probability den-
sity in ¢ space that a given wave function will occur as
an eigenfunction of energy E. The average density of
states involves an integration over D[y ] because we are
only interested in having an eigenvalue E, regardless of
what the eigenfunction is. In this sense Eq.(11) is much
more transparent than the usual expression (7) for p(E).
A further advantage is that no divergences, or complex
quantities, which are present in (7),occur in (11). The
main problem with (11) is the evaluation of the Jacobian.
We will later present explicit calculations of this quan-
tity for one-dimensional problems. As usual,we can
express our functional integrals as the limit N — o of
N-dimensional integrals. For this, we divide space into
an infinitesimal cubic lattice (spacing = 7), we label our
lattice points by an index ¢ =1,2,...,N,and put

Y(r) = a;.

The finite difference expression for the Laplace opera-
tor is then
AYy(r) = g1 (Z); a; — Zai),
where Z is the coordination number (dependent on the
number of dimensions), and Z)j indicates a sum over all
those j's which are neighbors of ;. The Schrodinger
equation (1) now becomes

(18)

- WE} a; + €a;, =Ea,. (19)
Here we have made the identifications

W=n2 (20)

€, =Vir) +2Zn2, (21)

Equation (19) is precisely the eigenvalue equation for a
tight-binding, nearest-neighbor -hopping Hamiltonian,
widely used in the alloy problem. Once we know how to
handle (19), the continuum case will be recaptured by
letting n — 0 in the final results. Equation (8) which
gives the potential in terms of the amplitudes {ai} be-
comes now

¢, =E+W Z}; aja; =edal (22)

Our integration in y space involves only wavefunc-

tions satisfying some normalization condition 2 af =
ug, it is therefore natural to introduce polar coordinates

a, =u cosop,,

a, = u sing, cosp,,
: (23)

Ay = u sind; sing,... COSPy-1;

ay =u sing; sing, ... sindy_q,

and to take {¢,, ¢, . - . »$y.1, E} as independent variables.
The normalization constant u, disappears from the prob-
lem, as can be seen from (22). If f({€,}) is the probabil-
ity density in € space,l? our Eq.(11) for the density of
states becomes

CICT |

1
p(E) =5 [db;...doy (el b D |

It is possible to transform this into an integral over
all wavefunctions, normalized or not. For this we
write

(24)
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1 w
P(B) =5 [dby...ddyy Jy duslu—ug)f{e))

x' 0(€g500es€y,u)
3(¢1. . .,¢N_1,u,E)

1 . » ©
=9 j;co tUe f-oo day:- daNb(u - uo)f({fz})

a(€1,...,€N,u) a(¢15=--¢~—1,“,E)
a(¢1"'-,¢N-17u?E) a(a15-°°’aN9E)

(€1y..0s€pu)
9@y,...,ay,E)
(25)
Next we notice that p(E) is actually independent of u,.
We therefore pick an arbitrary function x (#,) with the
only condition that [,° x (u)du = 1; we multiply both sides
of (25) by x(u,)du, and integrate to get

p(B) =3 [+ [ daydayx [(T a?)*]rdled)

‘a(el, Ez, cee ,€N,u)
a(al, “oe ,aN,E)

1
=5 [wday - dadu —ug) f{e))

. (26)

The function x may eventually be so chosen as to
facilitate the evaluation of the integral (26).

All this applies equally well to any number of dimen-
sions. We will next consider some specific one-dimen-
sional problems and evaluate the above formulas.

l1l. THE ONE-DIMENSIONAL CASE

We begin by studying the discrete eigenvalue problem
defined by Eq.(19), without making reference to any
underlying continuum. This is the Dyson problem,!
which appeared first in the study of the spectrum of
eigenfrequencies of a linear chain of oscillators with
random masses. We will interpret it here as the eigen-
value problem for an electron in a tight-binding band.
We lable our points or sites from left to right by an
index{ = —-N,—N +1,...,0,1,...N, and, since some
boundary conditions have to be imposed, we assume
amplitude zero to the left of —N and to the right of N.
[This amounts to saying that there are impenetrable
walls at —(N + 1) and at N + 1.] Equation (19) can then
be written more explicitly as

ex=E + Wa_y, ,/a_),
€; = E + W(a,-_l/a,» + ai+1/ai)3 (27)
i=—N+1,,,.,N—1,
ey =E + Wlay_,/ay).
It is clear that the most natural choice of independent
variables now is not the set of polar angles of Eq.(23),
but instead the set {£,,E} where the £,'s are the ratios

EiEai,,l/ai, {i=—N,—N+1,,..,N—1 (28)
in terms of which
e_N=E + WE_N,

i=—N+1,...,N—1,
(29)

;=E + W, +1/&,4),

€N=E + W/EN'l'

The Jacobian can now be written down
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w 0 0 .
w
- W 0 ces
£2,
o - X w o0
e ys €perre ) | _ £3y.

J = a(E-N, L ,gN-pEj -

We have written the last term of (30) in such a way as
to show explicitly that all sites from —N to N are in-
cluded. Expanding the determinant in the last row and
using the same notation we obtain the recurrence
relation

J(=N,N) = WN-¥) + (W/£R_yJ(—N,N — 1), (31)

from which, by iteration,

s=-N

N-1 -9
J(—N,N) = w2N <1 + 20 (Enqbya by > (32)
We will write this as

N
J(—N,N) = w2~ §N (Ey-18n-2" "2 E)2 (33)

with the explicit convention that the term s = N (unde-
fined so far) is unity

Our Eq.(11) written in terms of the £;'s is
N
o(E) = L: ve f_: i .dgN_lf[{ei}]Wzn Z;N
son

(En-18p-27"76)%  (39)

The factor } in front of the integral is absent here
because each set {¢,} corresponds to a pair of wave-
functions +y and —y. To further simplify matters, we
will consider the case in which all ¢,'s are statistically
independent so that the probability density f[{e,}] fac-
torizes in the form

rHed= L g(e) = &lE + WEBE + WLy + W/t
corgE + WEy + W/ )g(E + W/ky,), (35)

with g(e€) = probability density for a single site.

Inserting (35) into (34) and making the change of
variable u; = W&, (all 7) in the integrals, we obtain

N
PE) = T Lo [0 duy - duy 8B +u_y)

X gE +u_y,y + W2/uy) < g(E + W2/uy,)
w2 W-s)

(Uy-qUy-g°<ug)?

(36)

It is now convenient to define two integral operators
K, and K, which act on an arbitrary function k(x) in the
following way;

Kih|, = f.: k(y)g(E + x + W2/y)dy, (37)
Kl = [ ‘;’—: h)EE + y + W2/x)dy. (38)
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0o 1
. 0 1
.ee 0 1
= J(—N,N). (30)

—— W 1
£§-2

W
0 - 1

£§-1

I Each term in the summation Eq.(36) can be interpret-
ed as follows: integration over u_y, U y.15.. %51
amounts to-applying K, N + s times in succession to the
function #,(x) = g(E + x). Integration over uy ;,uy_,,
... ,U¢,.q amounts to apply K, N — s — 1 times to the
function 8 ,(x) = g(E + W2/x). Finally,the integration
over u, gives the density of states as

N
p(E) = EN f_: d“s(KIf“‘H)‘us(Kg'S'l&z)|us. (39)
§=-

It can be shown20 that, provided g is reasonably well
behaved, the limit

lim K{9,, = ¢(x) (40)

Avroo

exists and is given by the solution of the integral equa-
tion

#x) = [ $9)glE + x + W2/y)dy, (41)

suppiemented by the normalization condition f_: {x)dx
= f_ o #,(x)dx which in our case is simply
Lo ¢(x)dx = 1. (42)

The convergence in (40), moreover, is uniform in x.
Similarly, there exists the limit

Lim K$8,1, =f(x) (43)
with f given by the solution of

fo) =2 [2 pl)gte + y + W2/nay (44)

L2 fx)dx =1. (45)

It is also easy to verify by the change of variable x ~
W2x~1 and y — W29-1 in (41) that
¥x) = (W2/x2)f (W2/x). (46)

Using these results, it is immediaté that all except
the end terms s = — N or $ = N in (39) are approximate-

ly equal to f_: Plu)f (u )dug. In the limit of an infinitely
long chain N - o, the density of states per site is there-
fore also given by this expression

PE)per site = Lo dxf(x)f(W2/x)(W2/x)
= [2 dxf(w2/x) f(x). (@7

This is precisely the result obtained in Ref.15 by the
use of a Green's function approach.
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As our second example, we will now work out the
problem of a particle on a line with a potential

Vix) =¢ ? 8(x — x;), (48)
where the {x;} are points chosen independently and at
random with an average density p. This is the Frisch
and Lloyd problem.2 The ¢;'s of Eq.(21) have here a
probability distribution

2
n2

+ with probability np
(49)

with probability 1 — 7p

3o I |0

while W = 572, This problem can be handled by com-
bining our former example with a suitable limiting pro-
cedure to let 7 — 0. We assume an infinite system, so
that (41) applies, and we introduce the function

p(x) = 1pd(x — ¢/n) + (1 —pn)d(x) (50)
and write (41) as
1 Z
) — f¢(y)p<E xd F>ary. (51)
It is convenient to define next
X, (%) = (1/n)x/n + 1/92). (52)

Expression (51) as an integral equation for Xn and
using (50), one obtains immediately

X2(¥) = (1 + 1x3)2pmx (%) + (1 — 7p)(1 + nxg)2x ,(%0)

with (53)
- x + nE
0= T q(x + 1B) (54)
and
. = XxX—c+nk (55)
171 —n(x—c+ nE) "

In the limit 7 —» 0 Eq.53 reduces to a trivial identity.
However, the first derivative with respect to n followed
by n — 0 leads to an equation for x(x) = lim,l_,oxn(x):

2
3¢ (B2 + 22)x (%) =p[x(x) — x(x —©)]. (56)

This is the same equation derived Frisch and Lloyd

in their approach based on stochastic processes.20

Once (56) has been solved with the appropriate normali-
zation condition

f.: x(x)dx =1,

the density of states can be obtained by a similar limit-
ing procedure in (47). We notice first that

(57)

PE)unit length = (1/mp(E)per site- (58)
We also write (47) as
PE)per st te = S HRAWR/2)dx, (59)

which is correct because of (46). Next,using the defini-
tion of x ,, Eq. (52), we have

PE)ynit tength

- 1; fa ¢<x)¢(§”3)dx = [2 x5 ¢(172<T!I'5;)‘>"“
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=[o x,,(“)x,,[;(l T ;)] du, (60)
which in the limit n — 0 goes over into
oo
p(E)unit length = j;oo X(u)x(_u)d“' (61)

Frisch and Lloyd derived instead

-]

N(E)unit length = -/;m p(E’)unit length dE' = lim p-lux(u),
e (62)

but the two expressions are equivalent. The fact that

N(E) can be written as a functional linear in x, Eq.(62),

while p(E) is given by a quadratic functional of the same

X, Eq.(61),is already discussed in Halperin's work.3

A direct proof of the equivalence has also been given

recently.21

IV. THE QUESTION OF WAVEFUNCTION
LOCALIZATION

Suppose we have agreed on some definition of what is
meant by a “localized” wavefunction,and let L C ¥ be
the set of all those Y 's which satisfy this definition. It

is clear that if in Eq.(11) we restrict the domain of
integration to L instead of all y space, we obtain a par-
tial density of states P10 (E), associated with those wave-
functions that belong to L. Introducing the characteris-
tic function of L

_ 1 if ¢ is localized
Xloc(w) - { 0 otherwise ’ (63)
we can write
P10c(E) = [y X10cW)f e 1D ¥]17] (64)

which has the same structure as (11),the only difference
being that the factor x,,.(y) “erases” all extended s
states. The Mott- CFO conjecture would be verified if
we could prove that in the limit of an infinite system
pmc(E)/p(E) — 1 in certain parts of the energy spec-
trum, and p,__(E)/p(E) — 0 in other parts. We see that
the information enabling one to decide on the question of
localization is, at least in principle, contained in our
formalism.

To make the above rigorous, we have to define x .. ()
precisely. For an infinite system matters are very
simple: we call a state “localized” if it can be norma-
lized to unity, and extended or delocalized otherwise;
this seems to be the only reasonable definition. But it is
of no particular interest; infinite systems do not exist
in nature. On the other hand, and from a physical point
of view, it is clear that in a finite but macroscopic sam-
ple of material there are states we want to call localized
(like,for example,donor or acceptor states in a slightly
doped semiconductor) and states we want to call extend-
ed (for example,band states in a very pure crystalline
sample). We will try to define x ;.. on the basis of these
physical ideas. To avoid unnecessary complications,
we will only talk about the tight-binding band problem;
the case of the continuum can then be obtained by in-
serting the “mesh spacing” 71 of Sec.Il in the appropri-
ate places and taking the limit n — 0.

Let a(N) be any function with the properties

lim a(N) =0 (65)
N—>oo
and for every € > 0,
(66)

lim a(N)N¢ = w,
N-+ro0
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The typical example would be a(N) = (logN)1.
We propose the definition

N
X 10c W) = exp(— a(N) 4? Ia,-l> ’ (67)
where a; is the amplitude of ¥ (which we assume nor-
malized to unity) at site i. It is clear that this definition
has all the desired properties. For a macroscopic
system x ;,.(¥) = 0 if Y is a Bloch state, 2 modulated
Bloch state,or even a quasi-one-dimensional percola-
tion channel, and x . (¥) = 1 if ¥ is of the type usually
considered as localized, with most of the amplitude con-
centrated in a small region of space. The above approx-
imate equalities become increasingly accurate if the
size of the sample is increased.

Strictly speaking, our x,..(¥) is not the characteristic
function of any decent subset of Y,but of what is called
a “fuzzy set.”22 This is, however, irrelevant for our
purposes; all that matters is that the right-hand side of
(64) is a well-defined quantity for any N, and we simply
take it as the definition of p, (E).

An exact evaluation of (64) with the definition (67) does
not seem an impossible task in one dimension, since the
structures of (67) and (11) are very similar. But since
no mobility edges are expected in one dimension anyway,
we have made no serious effort to carry out this calcu-
lation.

We conclude this work with a few additional remarks.
One may want to know what fraction of y space corres-
ponds to localized states.

We can calculate this fraction x as
X = fY Xloc(‘p)D[‘p]
o]
N o
S o0 [ day-edaye *®E 51 — T o]
[~ o0 N 2 ’
f—oo j:oo daN5[1 —2 a4

(68)

which resembles an average of the quantity exp [—a(N)
2Yla il] over a microcanonical ensemble (because of

the § function in the integral). It is known from statis-
tical mechanics that for a fixed @ (N-independent) Al,Lngo

@xp(-— a2¥la, |)> can equally well be computed using
the corresponding canonical ensemble with<2ﬁ’ a?> =1.

For our case, and because of the very weak dependence of
a(N) on N the same proof still holds, and we have

1/2 - - N
o= (e o e ey

o exp(——(2/1r)1/2a(N)N1/2). (69)
Thus, a negligibly small fraction of ¥ space corres-
ponds to localized states. But these states must receive
an enormous weight in (11) because of the Jacobian. For

a localized state, one can considerably change all ¢;'s
outside the region of localization without appreciable
change in the wave function. If y has vanishing ampli-
tude at some site, it is not affected by the ¢ at that site.
From this,we conclude that |J|-1 = |3(ay,...,ay,E)/
3(€q,€9,..., €y, u)| must be extremely small for a
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localized state. Thus,the Jacobian tends to favor local-
ization, while the available volume in y space favors
delocalization of the states as said before. It would be
instructive to see which of these tendencies dominates;
and we can do so very easily in one dimension.

Let us take any state defined by amplitudes {a,} and
suppose these numbers rearranged into a decreasing se-
quence. If the state is localized, it should survive multi-

plication by exp [— a(N) 25 P la; |] ,and for this to happen
the asymptotic behavior for large N must be

la; <1/j, jlarge. (70)
Thus
1
o~ | ——— Nlo,
I 10¢ aray. - ay > eNlogh, (11)
For a typical extended state, on the other hand,
logN
7] gq > €972 18, (72)
therefore,
x|dJ ‘N
_I_ng_ = expl5 logN — (2/m)1/2a(N)N1/2) - o (73)
1 lJ | ext 2 N->o

indicating a dominance of the localizing tendency re-
presented by J. Of course, a rigorous theory should
consider f[{¢;}] also, and refer to the three-dimensional
case in order to be of interest. We have not succeeded
so far in elaborating such a theory on the basis of the
present formalism.
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Osborn used the property of compactness to show that there is an infinite mean square deviation
between the ¢ matrix for a local potential and any separable ¢ matrix of finite rank. I present an
alternate proof, using only the property of square integrability. The divergence of the mean square
deviation arises from very large momenta. I argue that a separable 1 matrix can give a good
approximation to the trinucleon energy, which is insensitive to values of the ¢ matrix at very large

momenta.

In a recent paper, Osborn) shows that a separable ex-
pansion of finite rank? does not converge to the ¢ matrix
for a local potential. In this note I summarize his argu-
ment, present a simplified proof of his conclusion, and
then argue that the approximation of a separable ¢
matrix is /ikely useful for certain calculations, such as
the energy of the trinucleon.

Osborn's argument uses the separation of operators
into those which are compact and those which are non-
compact.3 He also utilizes the lemma that a noncom-
pact operator is not square-integrable. He first states
that a local operator is noncompact. The ¢ matrix for
a local potential obeys the Lippmann-Schwinger equa-
tion

Hz) = v — vgy(2)H(2). (1)

Osborn shows that the second term on the right is
square-integrable (provided z is not at a pole) and there-
fore compact. The difference of the noncompact opera-
tor v, and the compact second operator gives a non-
compact #(z). But a separable ¢ matrix, £¥(z) is square-
integrable and therefore compact. Then the difference

At(z) = Hz) — t¥(2) (2)

is a noncompact operator, and therefore not square-
integrable. That is, the mean-square deviation of #¥(z)
from #(z) is infinite.

Sloan and Gray4 have very recently examined Os-
born's argument, and shown that the noncompactness of
a local potential arises from large values of momenta.
Their conclusion agrees with that of this note: that a
separable approximation can still be useful for calcula-
ting quantities which are insensitive to the value of the
t matrix at high momenta. Sloan's argument uses the
property of compactness; while in this paper we confine
ourselves to the property of square-integrability.

We simplify Osborn's proof, and obtain some insight
as to the source of the failure of convergence, as fol-
lows, First, we show that a local potential v is not
square-integrable. Since (from Osborn's paper) the
term vgy(2)#(z) is square-integrable, the ¢ matrix #(z) is
not square integrable. But {¥(z) is square-integrable;
then A#(z) defined by Eq. (2) is not square-integrable (in
agreement with Osborn's result) giving our Eq. (7),
below.

By definition, a local potential has a matrix element in
(r,r’) space

&lvlr?) = v(@)sr — ). (3)
Here &(r — r’) is a three-dimensional Dirac delta func-
tion. For determination of square-integrability, we

evaluate the trace as a six-dimensional integral

Trvv?) = f(rlv |r")2d37d37r’ = o, (4)
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The infinity results from the squared delta function in
the integrand.

It is of interest to evaluate Tr(vv ) for a local poten-
tial in the momentum representation, since we are con-
cerned with applications to the three-nucleon system,
which are generally made using this representation.
From (3), the potential has matrix elements in momen-
tum-space,

{(plvip” = fla). (5)

Here q = p — p’, and f(q) is the Fourier transform of
v(r). Note that a local potential is independent of the
vector Q = p + p’. We examine the integral, changing
variables from (p, p’) to (q, Q:

Tr(vv?) = [ (@lvlp)2d3pasy = [[f(@))2d3q [d3Q = .
(6)

The infinity clearly arises from very large values of
the magnitude @; that is, from very large magnitudes of
momenta p and p’. [This source could be anticipated,
since the integrand in (6) is bounded; so the divergence
which must occur to give agreement with (4) must come
from the infinite limits for integration in momentum
space.]

We now use the simple lemma that the sum (or differ-
ence) of an operator which is not square-integrable and
an operator which is square-integrable gives us-an
operator which is not square-integrable. We apply this
lemma twice: first where the operators are v and
vg,y(2)t(2), respectively; and then where the operators
are #(z) and ¢ ¥(z), respectively. We thus obtain one of
Osborn's results,

Tr(atat™) = [(plAt(z) |p)2d3p d3p’ = . M

The divergence shown in (7) is very disturbing at
first, since it appears that a separable { matrix is a
very poor approximation. This seems paradoxical, since
results for the trinucleon energy using a separable
approximation to the f-matrix agree quite well with
those using a ¢ matrix for a local potential.5 How can
we reconcile this contradiction: ¢# disagrees with ¢
even for large N, as shown by (7); but it is useful to
approximate ¢ by ¥, even for the extreme case N =1
(the unitary pole approximation #%).

It is crucial to remind ourselves that we are arguing
the utility of a separable approximation ¢¥ for some
specified purpose, such as calculation of the trinucleon
energy E;. Equations (6) and (7) show us that the
approximation of separability breaks down at very
large magnitudes of momenta,p and p’. But the tri-
nucleon energy E; is insensitive® to the values of the
t matrix at very large values of p,p’, or z, so the failure
of t¥ to be a good approximation for these conditions is

Copyright © 1973 by the American Institute of Physics 1314
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irrelevant to the utility of the approximation ¢¥ for this
specified purpose.

We can understand Lavine's resultf using Fuda's ¢-
matrix perturbation theory,? for the first-order correc-
tion to the triton energy:

3
AED =2 [0 ] = (9ol ]at,(B)19) — 1 8]. ®)
as=
Here |¢) is the triton state vector found solving the
Faddeev equations using approximation ¢{¥ for the two-
body ¢ matrix. « is the “channel” for interaction be-
tween nucleons § and y (different from each other, and
different from a). The error At (F,) uses(2)for channel

@, at the energy E, found using ¢¥. |, is the component

of the triton state vector in the @ channel. When we
evaluate (8) in the momentum representation, the factor
[l¢> — |¢,2] and its transpose each die off rapidly at
high momenta (for usual choices of ¢¥). This conver-
gence factor avoids the infinite result of (7), and in fact
gives a rather small numerical result, of order ¥; MeV
for central forces with soft cores.5

One could also argue that the divergence (7) is unlike-
ly to occur if we replace #(z) for a local potential by the
(unknown) ££(z) for the real nucleon—-nucleon ¢ matrix
that occurs in nature. Even a small nonlocality in the
potential would smear out the delta function (3), and
give some dependence on @ in (6).

But even if the real potential were exactly local, and
the divergence (7) held, the approximation #¥(z) is use-
ful for calculation of E for central forces. The diver-
gence (7) is useful as a “danger signal” to remind us
that {¥ is only an approximation, and that we must ex-
pect that there are limits to its utility. If we are calcu-
lating a quantity which is sensitive to (p|#(z)|p’) at very
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large magnitudes p and p’, we should anticipate that the
separable approximation ¥ would be inaccurate, Since
these matrix elements enter in calculation of electron—
trinucleon elastic scattering for very large momentum
transfers, we would expect failure of the separable
approximation here. (It is likely that three other effects
are also of significance in this problem: relativistic
effects; effects of poorly-known three-body forces; and
nonadditive effects in electron scattering.)

Returning for a moment to the problem of E;, the
main difficulty with use of the unitary pole separable
approximation is the not very good agreement between
t# and ¢ found8 for noncentral forces.
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Using the previous analysis of Gel’fand and Graev a new relativistically invariant expansion of a
scalar function on three-dimensional imaginary Lobachevski space L () is given. The coordinate
system used corresponds to the horospherical reduction SO (3, 1) D E, D S 0(2) and covers all of

L.
INTRODUCTION AND SUMMARY

Explicit relativistically invariant expansions of func-
tions defined on the three transitivity surfaces of the
proper Lorentz group in Minkowksi space have been
studied to varying degrees in recent years.1=3 Of these
surfaces explicit expansions on the upper sheet H, of
the double sheeted hyperboloid4 [x,x] = 1 and on the
coned [£, £] = 0 have been well developed.6 (Note: x is
a 4-vector in Minkowski space with [x,x] = x§ —x2 the
usual scalar product,) The explicit expansions on H,
and on the cone are based on the expansion formulas
due to Gel'fand ef al.7 The invariant expansion of a
scalar function f(x)(x € H,) is obtained by observing
that H, corresponds to a realization of three-dimen-
sional real Lobachevski space L4(R). An invertable
horospherical integral transform then associates a
function %z(£) on the cotie with each f(x). The invariant
expansion of f(x) then reduces to the invariant expan-
sion of k(£). The latter expansion is achieved by the
decomposition of z(£) into homogeneous components.

An analogous geometry and irreducible decomposition
of a function f(x) on the single sheeted hyperboloid H 19
with equation [x,x] = — 1, has also been given in Ref. 7.
The geometry of H, corresponds to a realization of
imaginary Lobachevski space L 3(I ) and identifies dia-
metrically opposed points [so that f(x) = f(~x)]. The
irreducible decomposition on H, differs from that on
H, in that it contains a discrete spectrum as well as the
usual continuous spectrum.

Previously there has been (to the author's knowledge)
one paper by Kuznetzov and Smorodinski® which has
considered an explicit complete set of functions on H,
realized as L4(I). This analysis uses the results of
Ref. 7 only insofar as they consider a parametrization
of x € H, for which the discrete spectrum term is not
necessary. [More specifically, they choose a coordinate
system which only parametrizes points at a real dis-
tance from x = (0, 0, 0, 1).] Verdiev,? on the other hand,
has given his attention to finding an explicit set of com-
plete functions with spin on H,. There are some short-
comings in Verdiev's work in that the continuous spec-
trum expansion functions have not been normalized and
the method used to obtain the normalized discrete spec-
trum expansion functions needs some explanation.
Zmuidzinas? has given a complete account of the expan-
sion of a scalar function defined on H, using the eigen-
function expansion methods of Titchmarsh.10 This
analysis has been done in the canonical group reduc-
tion SO(3, 1) D SO(3) > SO(2) or S system. Limic et al.3
have treated the general problem of the expansion of
square integrable functions defined on the transitivity
surfaces of SO(p, q) in the canonical group reduction
and hence include the results of Zmuidzinas as a special
case.

In this paper we examine the expansion of a square
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integrable function defined on L3(I ) in the noncanonical
group reduction SO(3, 1) D E(2) O SO(2) or horospherical
system. This expansion is new and serves to illustrate
‘how the analysis of Gel'fand and Graev should be treated
to yield the correct expansion formulas. There is only
one other group reduction which parametrizes all of
L4(I) (apart from the group reduction SO(3,1) > E(2) D
T, ® T,, which differs little from the horospherical
systemf. This is the S system. We do not however give
this expansion here as it differs little from the results
of Zmuidzinas and Limic ef al.

The study of the horospherical system group reduc-
tion of SO(3, 1) has received attention previously in
application to particle physics11,12 and is also of intrin-
sic group theoretical interest.

The content of this paper is arranged as follows. In
Sec.1 we collect the pertinent facts concerning the
Gel'fand-Graev analysis on L;(I). In Sec. 2 we give
the horospherical system expansion.

1. THE HARMONIC ANALYSIS OF A SCALAR
FUNCTION ON £, (/)

The central problem here is the decomposition of the
representation

[T.f](x) = f(xg),

into components which transform according to unitary
irreducible representations (UIRs) of the proper Lorentz
group SO(3,1). The Gel'fand-Graev transform on L.(1)
invertably maps f(x) into a pair of functions #(¢) and
¢(&,b). The function z(£) gives the representation

x € Ly(I) (1.1)

(&%) (&) = n(tg) (1.2)
and the functions ¢ (£, b) define the representation
[R,010) = 72U, )0 Ug), (1.3)

where ¢(f) = ¢(£,d) and B(l, g) is the zeroth coordinate
of {g. This pair of functions are obtained by integration
of f(x) over the two distinct manifolds of horospheres
on L4(I). [We assume that the reader is familiar with
the rudiments of the geometry of L;(I) as found for
instance in Ref. 7.] Accordingly, we have

(i) Horospheres of the first kind.

rE) = [ f(x)6[x, £]| — 1)dx (1.4)
with dx the invariant measure on L4(/)
dx .dx ,dx
=—17273, (1.5)
e
Copyright © 1973 by the American Institute of Physics 1316
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Here a typical horosphere of the first kind has the
equation

|[x, €] =1. (1.6)

(ii) Horospheres of the second kind.

In this case ¢(£,b) is obtained by integration of f(x)
over the isotropic line x = b + ¢£ according to

$(£,0) = [ f@ +t8)at, 1.7
where
[6,6]=—1, [b,£]1=[§¢]=0, by=0.

The choice of integration over an isotropic line is
more convenient than over the horosphere itself. We
note that each horosphere of the second kind given by
[x, €] = O consists of all mutually parallel isotropic
lines passing through the point £ on the cone.

f(x) is given in terms of 4(£) and ¢ (£,d) by the for-
mula

T = (4117)2 J r(©)6 @X1[x, €11 — 1)ag
1 g
* e J, cot264dp L. ¢, 6)aw, (1.8)
where
d§ dE,dég
de = =2 72
TR

with ¢ (£, §) the value of ¢(£,d) for the isotropic line

¥y = b + t£ lying in the [x,y] = cosé plane (i.e., [x,b] =
cosh). Tis a contour on the cone intersecting each gene-
rator once and the measure dw is defined by

aw = |§0|-l(§1d£2d§3 - §2d£1d£3 + §3d§1d§2)-

In order to achieve the decomposition of f(x) into
irreducible parts it is necessary to expand the “Fourier
components” i{¢) and ¢(£, 6) into homogeneous com-
ponents. For k(£) this is done exactly as for the case
of Ly(R),i.e.,

(1.9

&6+i

h(£) = 2—71n f“: F(£; 0)do, (1.10)

F(£;0) = fo°° h(EE)t-o-1dt, 1.11)
The expansion of ¢ (£, 9) into irreducible (homogene-

ous) components is achieved by Fourier analyzing

¢ (£, 6) with respect to the angle 6{0 = 6 < #) which

specifies each isotropic line in a given horosphere of

the second kind. The appropriate decomposition is

o0
2 F(&;x;2n)e2ins,

n=-

®(, 6) =% (1.12)

The “Fourier coefficients” satisfy the homogeneity
condition
F(&;b; 2n) = F(&; x; 2n)e 2 in, (1.13)

The invariant decomposition of f(x) is then

_ i S+ ico . —o-
S0 = o S 00+ D F &0, E]lmo2dkdo

+ L B n [ FGeb; me2 im0 ([x, £])at (1.14)

72 n=1
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and the inversion’formulas are
F(&0) = [ f(0)l[x, £]]odx,
F(g;b52n) = [ f(x)e2in96 ([x, £])dx. (1.16)

(1.15)

Group theoretically the “Fourier coefficients” in
(1.14) transform according to the irreducible repre-
sentations (IRs) of SO(3, 1) as follows:

(i) F(¢;0) transform according to the IRs
c=0+1=6+1+ip, (o<p<x), ky=0
o T
where [c, ko] labels each IR of SO(3,1). (This is the
notation due to Naimarkl13 that we are using here.) We

obtain the unitary case (i.e., the principal series) when
6 =—1.

(ii) F(&;b; 2n) transform according to the UIRs SO(3, 1)

c=0, ky=2n n=123- -, (1.18)

2. THE HOROSPHERICAL OR Ho SYSTEM
EXPANSION ON L;{/)

The Ho system 4-vector x on the single sheet hyper-
boloid H, is given by

x=(3[—e2+ (1 +72)e2],7e? cosep,re? sing,

fl—ee+ (2 — 1), @.1)

—o<ag<®w, O0=r<wn, 0=¢<2m.
This parametrization covers the x; — x5 = 0 half of the

[x,x] = — 1 hyperboloid and so covers all of L4(I).

For the Ho system expansion the contour I is taken
to be

Ep—§53=2 2.2)
and ¢ is parametrized according to
E=(1 +u2 +022u,20,—1 +u2 + 02), 2.3)

-0 <y,v <,

F(§; 0) is expanded in a double Fourier series accord-
ing to

F(¢;0) = ‘f_: _[: a,,(o)erueitvdrdy (2.4)
and the measure on the cone is
dt = 4 du dv. (2.5)

Taking x = (sha, 0, 0, —cha) the continuous spectrum
part of expansion (1. 14) then reduces to the calculation
of the integral

Ii“ (a) = _/_: au l: dvle“ (u2 + 1)2) —_ g‘al'O'ZeiAueiyg_
(2.6)
This integral can be calculated by using the identity
[t]8 = 8 + 18, @.7)

as well as the known Fourier transforms in two dimen-
sions of the functions (b2 — 22 — v2)7°°2 which ar